

	Copyright
	Table of Contents
	Foreword
	Preface
	Audience and Assumptions
	Contents of This Book
	Versions Covered in This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction and Essential Concepts
	System Programming
	Why Learn System Programming
	Cornerstones of System Programming
	System Calls
	The C Library
	The C Compiler

	APIs and ABIs
	APIs
	ABIs

	Standards
	POSIX and SUS History
	C Language Standards
	Linux and the Standards
	This Book and the Standards

	Concepts of Linux Programming
	Files and the Filesystem
	Processes
	Users and Groups
	Permissions
	Signals
	Interprocess Communication
	Headers
	Error Handling

	Getting Started with System Programming

	Chapter 2. File I/O
	Opening Files
	The open() System Call
	Owners of New Files
	Permissions of New Files
	The creat() Function
	Return Values and Error Codes

	Reading via read()
	Return Values
	Reading All the Bytes
	Nonblocking Reads
	Other Error Values
	Size Limits on read()

	Writing with write()
	Partial Writes
	Append Mode
	Nonblocking Writes
	Other Error Codes
	Size Limits on write()
	Behavior of write()

	Synchronized I/O
	fsync() and fdatasync()
	sync()
	The O_SYNC Flag
	O_DSYNC and O_RSYNC

	Direct I/O
	Closing Files
	Error Values

	Seeking with lseek()
	Seeking Past the End of a File
	Error Values
	Limitations

	Positional Reads and Writes
	Error Values

	Truncating Files
	Multiplexed I/O
	select()
	poll()
	poll() Versus select()

	Kernel Internals
	The Virtual Filesystem
	The Page Cache
	Page Writeback

	Conclusion

	Chapter 3. Buffered I/O
	User-Buffered I/O
	Block Size

	Standard I/O
	File Pointers

	Opening Files
	Modes

	Opening a Stream via File Descriptor
	Closing Streams
	Closing All Streams

	Reading from a Stream
	Reading a Character at a Time
	Reading an Entire Line
	Reading Binary Data

	Writing to a Stream
	Writing a Single Character
	Writing a String of Characters
	Writing Binary Data

	Sample Program Using Buffered I/O
	Seeking a Stream
	Obtaining the Current Stream Position

	Flushing a Stream
	Errors and End-of-File
	Obtaining the Associated File Descriptor
	Controlling the Buffering
	Thread Safety
	Manual File Locking
	Unlocked Stream Operations

	Critiques of Standard I/O
	Conclusion

	Chapter 4. Advanced File I/O
	Scatter/Gather I/O
	readv() and writev()

	Event Poll
	Creating a New Epoll Instance
	Controlling Epoll
	Waiting for Events with Epoll
	Edge- Versus Level-Triggered Events

	Mapping Files into Memory
	mmap()
	munmap()
	Mapping Example
	Advantages of mmap()
	Disadvantages of mmap()
	Resizing a Mapping
	Changing the Protection of a Mapping
	Synchronizing a File with a Mapping
	Giving Advice on a Mapping

	Advice for Normal File I/O
	The posix_fadvise() System Call
	The readahead() System Call
	Advice Is Cheap

	Synchronized, Synchronous, and Asynchronous Operations
	Asynchronous I/O

	I/O Schedulers and I/O Performance
	Disk Addressing
	The Life of an I/O Scheduler
	Helping Out Reads
	Selecting and Configuring Your I/O Scheduler
	Optimzing I/O Performance

	Conclusion

	Chapter 5. Process Management
	Programs, Processes, and Threads
	The Process ID
	Process ID Allocation
	The Process Hierarchy
	pid_t
	Obtaining the Process ID and Parent Process ID

	Running a New Process
	The Exec Family of Calls
	The fork() System Call

	Terminating a Process
	Other Ways to Terminate
	atexit()
	on_exit()
	SIGCHLD

	Waiting for Terminated Child Processes
	Waiting for a Specific Process
	Even More Waiting Versatility
	BSD Wants to Play: wait3() and wait4()
	Launching and Waiting for a New Process
	Zombies

	Users and Groups
	Real, Effective, and Saved User and Group IDs
	Changing the Real or Saved User or Group ID
	Changing the Effective User or Group ID
	Changing the User and Group IDs, BSD Style
	Changing the User and Group IDs, HP-UX Style
	Preferred User/Group ID Manipulations
	Support for Saved User IDs
	Obtaining the User and Group IDs

	Sessions and Process Groups
	Session System Calls
	Process Group System Calls
	Obsolete Process Group Functions

	Daemons
	Conclusion

	Chapter 6. Advanced Process Management
	Process Scheduling
	Timeslices
	I/O- Versus Processor-Bound Processes
	Preemptive Scheduling

	The Completely Fair Scheduler
	Yielding the Processor
	Legitimate Uses

	Process Priorities
	nice()
	getpriority() and setpriority()
	I/O Priorities

	Processor Affinity
	sched_getaffinity() and sched_setaffinity()

	Real-Time Systems
	Hard Versus Soft Real-Time Systems
	Latency, Jitter, and Deadlines
	Linux’s Real-Time Support
	Linux Scheduling Policies and Priorities
	Setting Scheduling Parameters
	sched_rr_get_interval()
	Precautions with Real-Time Processes
	Determinism

	Resource Limits
	The Limits
	Setting and Retrieving Limits


	Chapter 7. Threading
	Binaries, Processes, and Threads
	Multithreading
	Costs of Multithreading
	Alternatives to Multithreading

	Threading Models
	User-Level Threading
	Hybrid Threading
	Coroutines and Fibers

	Threading Patterns
	Thread-per-Connection
	Event-Driven Threading

	Concurrency, Parallelism, and Races
	Race Conditions

	Synchronization
	Mutexes
	Deadlocks

	Pthreads
	Linux Threading Implementations
	The Pthread API
	Linking Pthreads
	Creating Threads
	Thread IDs
	Terminating Threads
	Joining and Detaching Threads
	A Threading Example
	Pthread Mutexes

	Further Study

	Chapter 8. File and Directory Management
	Files and Their Metadata
	The Stat Family
	Permissions
	Ownership
	Extended Attributes
	Extended Attribute Operations

	Directories
	The Current Working Directory
	Creating Directories
	Removing Directories
	Reading a Directory’s Contents

	Links
	Hard Links
	Symbolic Links
	Unlinking

	Copying and Moving Files
	Copying
	Moving

	Device Nodes
	Special Device Nodes
	The Random Number Generator

	Out-of-Band Communication
	Monitoring File Events
	Initializing inotify
	Watches
	inotify Events
	Advanced Watch Options
	Removing an inotify Watch
	Obtaining the Size of the Event Queue
	Destroying an inotify Instance


	Chapter 9. Memory Management
	The Process Address Space
	Pages and Paging
	Memory Regions

	Allocating Dynamic Memory
	Allocating Arrays
	Resizing Allocations
	Freeing Dynamic Memory
	Alignment

	Managing the Data Segment
	Anonymous Memory Mappings
	Creating Anonymous Memory Mappings
	Mapping /dev/zero

	Advanced Memory Allocation
	Fine-Tuning with malloc_usable_size() and malloc_trim()

	Debugging Memory Allocations
	Obtaining Statistics

	Stack-Based Allocations
	Duplicating Strings on the Stack
	Variable-Length Arrays

	Choosing a Memory Allocation Mechanism
	Manipulating Memory
	Setting Bytes
	Comparing Bytes
	Moving Bytes
	Searching Bytes
	Frobnicating Bytes

	Locking Memory
	Locking Part of an Address Space
	Locking All of an Address Space
	Unlocking Memory
	Locking Limits
	Is a Page in Physical Memory?

	Opportunistic Allocation
	Overcommitting and OOM


	Chapter 10. Signals
	Signal Concepts
	Signal Identifiers
	Signals Supported by Linux

	Basic Signal Management
	Waiting for a Signal, Any Signal
	Examples
	Execution and Inheritance
	Mapping Signal Numbers to Strings

	Sending a Signal
	Permissions
	Examples
	Sending a Signal to Yourself
	Sending a Signal to an Entire Process Group

	Reentrancy
	Guaranteed-Reentrant Functions

	Signal Sets
	More Signal Set Functions

	Blocking Signals
	Retrieving Pending Signals
	Waiting for a Set of Signals

	Advanced Signal Management
	The siginfo_t Structure
	The Wonderful World of si_code

	Sending a Signal with a Payload
	Signal Payload Example

	A Flaw in Unix?

	Chapter 11. Time
	Time’s Data Structures
	The Original Representation
	And Now, Microsecond Precision
	Even Better: Nanosecond Precision
	Breaking Down Time
	A Type for Process Time

	POSIX Clocks
	Time Source Resolution

	Getting the Current Time of Day
	A Better Interface
	An Advanced Interface
	Getting the Process Time

	Setting the Current Time of Day
	Setting Time with Precision
	An Advanced Interface for Setting the Time

	Playing with Time
	Tuning the System Clock
	Sleeping and Waiting
	Sleeping with Microsecond Precision
	Sleeping with Nanosecond Resolution
	An Advanced Approach to Sleep
	A Portable Way to Sleep
	Overruns
	Alternatives to Sleeping

	Timers
	Simple Alarms
	Interval Timers
	Advanced Timers


	Appendix A. GCC Extensions to the C Language
	GNU C
	Inline Functions
	Suppressing Inlining
	Pure Functions
	Constant Functions
	Functions That Do Not Return
	Functions That Allocate Memory
	Forcing Callers to Check the Return Value
	Marking Functions as Deprecated
	Marking Functions as Used
	Marking Functions or Parameters as Unused
	Packing a Structure
	Increasing the Alignment of a Variable
	Placing Global Variables in a Register
	Branch Annotation
	Getting the Type of an Expression
	Getting the Alignment of a Type
	The Offset of a Member Within a Structure
	Obtaining the Return Address of a Function
	Case Ranges
	Void and Function Pointer Arithmetic
	More Portable and More Beautiful in One Fell Swoop

	Appendix B. Bibliography
	Books on the C Programming Language
	Books on Linux Programming
	Books on the Linux Kernel
	Books on Operating System Design

	Index
	About the Author

