
ptg8274462

ptg8274462

Tim Kadlec

implementing
responsive

design
Building sites for an anywhere, everywhere web

ptg8274462

ImplementIng ResponsIve DesIgn:
BuIlDIng sItes foR an anywheRe,
eveRywheRe weB
Tim Kadlec

new RIDeRs
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at: www.newriders.com
To report errors, please send a note to
errata@peachpit.com

New Riders is an imprint of Peachpit, a division of
Pearson Education.

Copyright © 2013 by Tim Kadlec

Project Editor: Michael J. Nolan
Development Editor: Margaret S. Anderson/
Stellarvisions
Technical Editor: Jason Grigsby
Production Editor: Rebecca Winter
Copyeditor: Gretchen Dykstra
Indexer: Joy Dean Lee
Proofreader: Rose Weisburd
Cover Designer: Aren Straiger
Interior Designer: Mimi Heft
Compositor: Danielle Foster

Find code and examples available at the companion
website, www.implementingresponsivedesign.com.

notIce of RIghts
All rights reserved. No part of this book may be
reproduced or transmitted in any form by any
means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior writ-
ten permission of the publisher. For information
on getting permission for reprints and excerpts,
contact permissions@peachpit.com.

notIce of lIaBIlIty
The information in this book is distributed on
an “As Is” basis without warranty. While every
precaution has been taken in the preparation of the
book, neither the author nor Peachpit shall have
any liability to any person or entity with respect to
any loss or damage caused or alleged to be caused
directly or indirectly by the instructions contained
in this book or by the computer software and
hardware products described in it.

tRaDemaRks
Many of the designations used by manufacturers
and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in
this book, and Peachpit was aware of a trademark
claim, the designations appear as requested by the
owner of the trademark. All other product names
and services identified throughout this book are
used in editorial fashion only and for the benefit of
such companies with no intention of infringement
of the trademark. No such use, or the use of any
trade name, is intended to convey endorsement
or other affiliation with this book.

ISBN 13: 978-0-321-82168-3
ISBN 10: 0-321-82168-8

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.newriders.com
www.implementingresponsivedesign.com

ptg8274462

For my wife and our
beautiful daughters.

ptg8274462

acknowledgements
It is frequently said that writing a book is a lonely, solitary act. Perhaps that is
true in some cases, but it certainly wasn’t the case with this book. If this book is
any good, it’s because of all the hard work, patience and feedback provided by
everyone who helped along the way.

I owe a huge thank you to…

Michael Nolan, who invited me to write a book in the first place. Thanks for
being willing to gamble on me.

Margaret Anderson and Gretchen Dykstra for overlooking my horrible mis-
use of punctuation and for generally making it sound like I know how to write
much better than I do.

Danielle Foster for making the book look so fantastic, and putting up with a few
last minute adjustments. Also, to Rose Weisburd, Joy Dean Lee, Aren Straiger,
Mimi Heft, Rebecca Winter, Glenn Bisignani and the rest of the team at New
Riders for helping make this book come to life.

Ed Merritt, Brad Frost, Guy Podjarny, Henny Swan, Luke Wroblewski, Tom
Maslen and Erik Runyon for their incredible contributions. By being willing
to share their expertise and experiences, they’ve made this a much richer book
than it would have otherwise been.

Jason Grigsby for making sure I wasn’t making things up along the way and for
providing valuable (and frequently hilarious) feedback and encouragement
throughout. Not only is Jason one of the smartest people I know, but he’s also
one of the most helpful. I’m thankful to be able to call him a friend.

Aaron Gustafson for writing such a great foreword. I’ve been learning from
Aaron since I first started working on the web—to say I’m humbled and hon-
ored that he agreed to write the foreword is an understatement.

Stephen Hay, Stephanie Rieger, Bryan Rieger, Brad Frost, Derek Pennycuff,
Ethan Marcotte, Chris Robinson, Paul Thompson, Erik Wiedeman, Sara
Wachter-Boettcher, Lyza Danger Gardner, Kristofer Layon, Zoe Gillenwater,
Jeff Bruss, Bill Zoelle, James King, Michael Lehman, Mat Marquis, Nishant
Kothary, Andy Clarke, Ronan Cremin, Denise Jacobs and Cennydd Bowles for
the insights, feedback and encouragement they provided along the way. This
book owes a great deal to their collective awesomeness.

ImplemenTIng ResponsIve DesIgniv

ptg8274462

To everyone whose conversations, both in person and online, inspired the
discussion that takes place in this book. This is an awesome community we
have going and I’m proud to be a part of it.

My mom and dad for their love and words of encouragement throughout.

My lovely daughters for reminding me it was ok to take a break every once in
awhile to play and for filling each day with laughs, kisses and hugs.

And my incredible wife, Kate. This book, and anything else I do that is any
good, is a direct result of her loving support and encouragement. There are no
words powerful enough to express how thankful I am for her.

vAcKnowleDgemenTs

ptg8274462

foreword
By Aaron Gustafson
A few years back, photography legend Chase Jarvis smartly observed that
“the best camera is the one that’s with you.” It was a mildly shocking assertion
at the time, but it rings true: the perfect shot is rarely planned. Rather, it sneaks
up on you.

Perhaps the light is perfectly accentuating the fall foliage on your late afternoon
stroll. Or perhaps your infant daughter just pulled herself up on two legs for the
first time. In moments like these, it doesn’t matter that your Leica is sitting on
a shelf in the other room or that you left your Rebel in the car—what matters
is that you have a camera, however crude, in your pocket and can capture this
serendipitous and ephemeral moment.

Riffing on Jarvis’s idea, Stephanie Rieger has made the case that the best
browser is the one you have with you. After all, life is unpredictable.
Opportunities are fleeting. Inspiration strikes fast and hard.

Imagine yourself as a cancer researcher. You’ve been poring over a mountain
of research for months, looking for a way to increase interferon-gamma
production in an effort to boost the body’s natural ability to inhibit the
development of tumors. Your gut tells you that you’re close to an answer,
but it’s just out of reach. Then one morning, while washing the exhaustion
off in a nice hot shower, it hits you. Eureka! You think you’ve got it—you just
need to refer back to that paper you read last week.

Dripping, you leap from the tub and land on the bath mat. Without even grab-
bing a towel, you pluck your mobile off the counter and head to the journal’s site,
only to find yourself re-routed to a “lite” version of the website that shows you
only general information about the publication and prompts you to subscribe.

Your fingers leave wet streaks across the screen as you frantically scroll down
the page to find the inevitable link to “View Full Site” and click it. As the screen
loads, you find yourself hovering 30,000 feet above a patchwork quilt of a
homepage that could only have been designed by committee.

ImplemenTIng ResponsIve DesIgnvi

ptg8274462

Several minutes of pinching, zooming, and typing later, you finally find the
article, only to discover it’s a PDF and nearly impossible to read on your tiny
screen. Dejected, you put down the phone and sulk back into the shower,
hoping it will wash away your disappointment.

Sadly, browsing the web on mobile is all too often a frustrating (and occasion-
ally dehumanizing) endeavor. But it doesn’t have to be.

In the pages of this very book, my friend Tim clearly outlines the steps you can
(and indeed should) take to ensure that the sites you help create offer each user
a fantastic experience, tailored to the capabilities of her device and respectful
of her time, patience, and data limits. Don’t let his small town charm fool you:
Tim knows this stuff inside and out. I learned a ton from this book and I know
you will too.

Aaron Gustafson is the author Adaptive Web Design: Crafting Rich Experiences with Progressive
Enhancement (Easy Readers, 2011)

FoRewoRD vii

ptg8274462

This page intentionally left blank

ptg8274462

contributions
The discussion around responsive design moves fast. Very fast. This book is
intended to be a synthesis of the incredible discussion that is taking place in
our community about this topic. To that end, I asked several people if they
would be willing to contribute short pieces based on their recent projects and
research.

Here are the contributions you’ll find, in order of their appearance in the book:

•	 Vertical Media Queries, by Ed Merritt, page 70

•	 Performance Implications of Responsive Design, by Guy Podjarny,
page 102

•	 Small Phone, Big Expectations, by Tom Maslen, page 136

•	 Responsive Design and Accessibility, by Henny Swan, page 141

•	 Selling Responsive Design, by Brad Frost, page 159

•	 RESS in the Wild, by Erik Runyon, page 210

•	 Beyond Layout, by Luke Wroblewski, page 242

Each of the seven contributors featured are experimenting with the cutting
edge of responsive design. They’re implementing the techniques discussed
in this book, and pushing the discussion forward. I’m incredibly honored to
be able to include their contributions—contributions based on hard-earned
experience—in this book.

conTRIBuTIons ix

ptg8274462

contents

Chapter 1: the anywheRe, eveRywheRe weB 1

Where we went wrong . 3

The devices are coming, the devices are coming . 4
Display size . 6
Network speeds . 6
Standards support . 7
Input method . 7
Context . 8

Separate sites . 9
Divergence . 10

Becoming responsive . 11
Progressive enhancement. 14

Why another book on responsive design? . 16

What’s covered? . 17

Who is this book for? . 18

Code examples . 19

The companion site . 19

Chapter 2: fluID layouts 21

Layout options . 23
Fixed-width . 23
Fluid layouts . 25
Elastic layouts . 26
Hybrid layouts . 26
Which approach is the most responsive? . 27

Sizing fonts . 28
Pixels . 28
Ems . 29
Percentages . 31
Bonus round: rems . 32
Which approach is the most responsive? . 33
Converting from pixels . 34

ImplemenTIng ResponsIve DesIgnx

ptg8274462

Grid layouts . 36
Content-out . 37
Setting the grid . 38

Mixing fixed and fluid widths . 44
Table layouts—the right way . 44

Wrapping it up . 50

Chapter 3: meDIa QueRIes 53

Viewports . 57
A pixel is a pixel, unless it isn’t . 58
Viewport tag and properties . 59

Media query structure . 65
Media types . 65
Media expressions . 67
Logical keywords . 67
Rules . 72

Embedded versus external . 73

Media query order . 74
Desktop down . 74
Mobile up . 75

Create your core experience . 76

Determining breakpoints . 78
Follow the content . 79
Enhancing for larger screens . 83
Using ems for more flexible media queries . 85

Navigation . 87
Toggling . 88

Supporting Internet Explorer . 92

Wrapping it up . 93

Chapter 4: ResponsIve meDIa 95

What’s the problem? . 96
Performance . 97

Selectively serving images to mobile . 99
JavaScript .100

conTenTs xi

ptg8274462

Introducing matchMedia .104

Responsive image strategies . 105
Fighting the browser .105
Resignation .106
Going to the server .106

Responsive image options . 106
Sencha.io Src .106
Adaptive Images .107
Wait, what’s the answer here? .111

Background images . 111
While we’re at it .113

High-resolution displays . 115
SVG .116

Other fixed-width assets . 118
Video .118
Advertising .122

Wrapping it up . 125

Chapter 5: plannIng 127

Choosing to be responsive . 128

Considerations . 129
Performance .129
Context .130
Content negotiation .130
Time investment .130
Support .131
Advertising .132
Conclusion .132

Consider your analytics . 133
Skewed site analytics .134
Which stats matter .135
Skewed market share statistics .139

Consider your content . 139
Content audit .140
Page tables .143

ImplemenTIng ResponsIve DesIgnxii

ptg8274462

Consider where you’re going . 144
Optimized for some, accessible to many .144

Consider the cross-device experience . 145

Prepare your test bed . 147
Actual devices .148
Emulators .150
Third-party services .152

Wrapping it up . 152

Chapter 6: DesIgn woRkflow 153

Your mileage may vary . 154
An interactive medium .155
Collaboration .155
Thinking in systems .160

Thinking mobile first . 160
Mobile is exploding .161
Mobile forces you to focus .162
Mobile extends your capabilities .164

The tools . 165
Wireframes .165
Mock-ups .168
Style guides .173

Wrapping it up . 178

Chapter 7: ResponsIve content 179

Starting with the content . 180

Content types . 181
Purpose .182
Creation. .182
Structure .182

What content to display, and when . 184
Removing content .184
Enhancing content .186

When should content order change? . 191
Structure, again .192

conTenTs xiii

ptg8274462

Where we need to go . 194
Code soup .194
Baby steps .195
Building an API .196

Wrapping it up . 197

Chapter 8: Ress 199

User agent detection . 201
Anatomy of a user agent string .202
What can you do with user agent detection? .203

Feature detection . 204
Modernizr .204
Going to the server .205

Combining user agent detection and feature detection 207

RESS: The best of both worlds . 208

Troubled waters . 209

Installing WURFL . 213
Configuration .214

Detecting capabilities . 216
Making calls .221
Optimizing for touch .223

Wrapping it up . 226

Chapter 9: ResponsIve expeRIences 227

A system of sensors . 228

Network . 230
What can we do? .231

Context . 234
Classifying context .236
Observe and research .237

Capabilities . 238
HTML5 input types .238
APIs .241

Wrapping it up . 253

ImplemenTIng ResponsIve DesIgnxiv

ptg8274462

Chapter 10: lookIng foRwaRD 255

Photo Credits . 259

Index . 260

About the Technical Editor . 271

About the Author . 271

conTenTs xv

ptg8274462

This page intentionally left blank

ptg8274462Chapter 1

The Anywhere,
everywhere

web
Only an arrogant man would believe he could

plan a city; only an unimaginative man
would want to. —JOhn Kay

ptg8274462

The Web is an incredibly unstable environment.

New operating systems emerge daily. Browsers are iterating faster than ever. On
any given day we encounter larger devices, smaller devices, devices with incred-
ibly powerful web browsing capabilities, devices with very limited browsers,
devices with touch screen control, and devices with trackpads and keyboards.

While new devices emerge, older devices and browsers remain in use. Technol-
ogy may be evolving at an incredibly rapid pace, but that doesn’t mean that the
neighbor down the road is intent on keeping up. A new device may be released,
only to be cancelled a few months later.

There are few rocks to cling to. What’s true one day may not be true the next.
The result of all of this is chaos.

But that’s the fun part. Chaos breeds confusion, but it also breeds innovation
and creativity. As new form factors hit the market and browsers continue to
push the boundaries, the number of applications and situations we can build
for grows exponentially.

The Web is universal. It is ubiquitous. Unlike any medium that has preceded
it, the Web can adapt to any screen and any context. It is inherently flexible
and malleable.

This chapter will discuss:

•	 The rapidly increasing diversity of connected devices

•	 Factors such as display size, network speeds, standards support,
input methods and context

•	 The impulse to create a separate experience for each situation
(a losing battle)

•	 The need for responsive design and what it means to be responsive

•	 What you can expect from the remainder of the book

•	 Who should read this book

•	 How code is formatted in this book

DD Form factor
The size, configura-
tion, and physical
characteristics of
a device.

ImplementIng respOnsIve DesIgn2

ptg8274462

where we went wrong
Watching my infant daughters was an enlightening experience. Whenever they
were given a new toy, they’d try to play with it the same way they played with
their old toys. They searched for familiar traits, links that tied the old with the
new. Only after using the new toys in that manner for a while would they dis-
cover all the new things they could do.

This makes sense: the past is known, the future is unknown. We embrace famil-
iar mental models. We opt for the safe and familiar over the risky and new. The
problem is that basing the future on past experiences limits the evolution of new
ideas and media.

The Web has been no exception.

As designers, we’ve tried to recreate our control of the printed page on the
Web. This mindset is reflected in the way we’ve created websites for our clients.
We’ve targeted a specific browser. We’ve optimized for a specific width. We’ve
implemented hack after hack to ensure that we can create identical experiences
cross-browser and cross-platform.

We’ve done everything we can to put ourselves in control, but the fact remains
that we were never in control: on the Web, users are in the driver’s seat.

Users choose the browser they want to use. They can zoom in and out to in-
crease or reduce the font size. They can maximize the browser or view it at half
the available width. They can opt for a top-of-the-line device or a three-year-
old model that’s sitting on the discount shelf. They can use the default browser
on their device or install one of the many freely available alternatives. They can
view a site while on the go or while relaxing in the comfort of their own home.
They have control over where, and how, they access our content.

As designers, we’re starting to figure this out, but our assertions that a site
has to look the same in all situations are evidence that we haven’t quite let go.
Nothing has made this more obvious than the incredible explosion of new
devices and platforms emerging onto the scene.

DD Mental model
A person’s thought
process about how
something works in
the real world.

Chapter 1 • the anywhere, everywhere web 3

ptg8274462

The devices are coming,
the devices are coming
I’m a paranoid traveler. I don’t fear flying, but I fear missing my flight. As a
result, I often find myself sitting in the waiting area of a crowded airport with
some time to kill.

So I people watch. More specifically, I look around to see what kinds of devices
people are using. On a recent trip, I was flying out of a small, rural airport, the
kind of airport where it takes you five minutes to check in your bags. There
were maybe twenty-five people in the waiting area, but oh the gadgets! There
were Android phones and iPhones and, yes, a few older feature phones. Some-
one was reading on a Nook. Nearest to me, a lady with a few strands of gray in
her hair was reading the news on her iPad.

We boarded the plane. After the stewardess gave the OK to turn electronic
devices on again, people started reaching into their bags. That same lady, now
sitting two rows in front of me in an aisle seat, reached into her carry-on and
pulled out a Kindle to do some reading. When we landed she deposited the
Kindle back into the bag, and pulled out an iPhone.

This one lady, over the course of about five hours, interacted with content
on three different devices. It was a small reminder of just how many non-PC
devices have emerged on the scene in recent years.

As of the end of 2011, there were 5.9 billion mobile subscriptions world-
wide—87 percent of the world’s population at the time.1 That number is poised
to grow significantly: global shipments of smartphones surpassed that of PCs
for the first time ever in the fourth quarter of 2010.2

Web browsing on mobile devices is escalating as well, due in part to the much
improved web experience that a phone can now provide. Early on, the few
phones that could access the Internet did so only in a rudimentary fashion. The
hardware was very limited. Devices were incapable of understanding more than
a very simplified version of XML called Wireless Markup Language (WML).

1 “The World in 2011: ICT Facts and Figures” at www.itu.int/ITU-D/ict/facts/2011/material/
ICTFactsFigures2011.pdf

2 “Smartphone sales pass PC sales for the first time in history!” at www.smartonline.com/
smarton-products/smarton-mobile/smartphones-pass-pc-sales-for-the-first-time-in-history/

ImplementIng respOnsIve DesIgn4

www.itu.int/ITU-D/ict/facts/2011/material/ICTFactsFigures2011.pdf
www.itu.int/ITU-D/ict/facts/2011/material/ICTFactsFigures2011.pdf
www.smartonline.com/smarton-products/smarton-mobile/smartphones-pass-pc-sales-for-the-first-time-in-history/
www.smartonline.com/smarton-products/smarton-mobile/smartphones-pass-pc-sales-for-the-first-time-in-history/

ptg8274462

20

30

40

50

60

2009 2010 2011

PANDORA

Percentage of Users Accessing Pandora and Twitter via Mobile Devices

TWITTER

Networks were brutally slow. Screen sizes were small and the methods of input
were awkward and clumsy.

Mobile devices evolved though, as technology tends to do. A few more capable
devices started coming out in the early 2000s, but it wasn’t until the original
iPhone was announced in 2007 that the game was completely changed. Sud-
denly, you could experience the “full Web” on your mobile device. The brows-
ing experience of the iPhone and subsequent smartphones blew everything
that came before it out of the water.

There’s a funny thing about giving someone an experience that doesn’t suck—
they end up using it more often. Pandora, an online music-streaming site, re-
ceived 60 percent of its traffic in 2011 from mobile devices; that number was
25 percent in 2009. In the same time frame, the social site Twitter has grown
from 25 percent to 55 percent mobile (Figure 1.1).3 In fact, traffic to mobile
websites in general increased by a whopping 600 percent in 2010.4

Mobile phones may be at the head of the class, but they’re far from being the
only kind of device causing disruption. Tablets, currently led by Apple’s iPad,
are bridging the gap between phones and laptops. They offer the portability of
a smartphone while sporting screen real estate akin to a small laptop. It is esti-
mated that by 2015 sales of tablets will be in the neighborhood of $49 billion.5

3 “Mobile Devices Drive More Than Half of Traffic to Twitter and Pandora” at http://therealtimereport.
com/2011/10/21/mobile-devices-drive-more-than-half-of-traffic-to-twitter-and-pandora/

4 “Smartphone market drives 600% growth in mobile web usage” at http://news.bango.
com/2010/02/16/600-percent-growth-in-mobile-web-usage/

5 “Tablet Market May Surge to $49 Billion” at www.businessweek.com/technology/content/apr2011/
tc20110418_512247.htm

Figure 1.1 Percent-
age of mobile traffic
for Twitter and
Pandora from 2009
to 2011.

Chapter 1 • the anywhere, everywhere web 5

http://therealtimereport.com/2011/10/21/mobile-devices-drive-more-than-half-of-traffic-to-twitter-and-pandora/
http://therealtimereport.com/2011/10/21/mobile-devices-drive-more-than-half-of-traffic-to-twitter-and-pandora/
http://news.bango.com/2010/02/16/600-percent-growth-in-mobile-web-usage/
http://news.bango.com/2010/02/16/600-percent-growth-in-mobile-web-usage/
www.businessweek.com/technology/content/apr2011/tc20110418_512247.htm
www.businessweek.com/technology/content/apr2011/tc20110418_512247.htm

ptg8274462

Internet-enabled TVs are still a relatively youthful market, but with major
players such as Google and Apple tossing their hats into the ring, the potential
is there for them to take off in the very near future. In the meantime, gaming
devices such as the Microsoft Xbox 360 and Nintendo Wii come with built-in
browsers, enabling users to view the Web right on their TV screens.

E-book readers, largely dominated by the family of Amazon Kindle devices and
the Nook from Barnes and Noble, are also coming with built-in web browsers.
The browsing experience is perhaps less refined and elegant than it is on a tablet,
smartphone, or PC, but don’t let that fool you into thinking people aren’t using
them. In this era of nearly ubiquitous connectivity, the best browser is the one
you have with you.

Add all this up and it’s easy to see that websites need to be usable on more
devices than ever before. Each kind of device brings its own combination
of constraints and capabilities.

Display size
Display size has always been variable, but at least we used to be able to antici-
pate where we were headed. In 1984, the original Macintosh computer was
released sporting a 512 × 342px resolution. As time went by, the resolution size
steadily increased. Ten years later, in 1994, the Apple Multiple Scan 17" Dis-
play was released, bringing with it a 1024 × 768px resolution.

Things were quickly shaken up though. Mobile devices that could connect
to the Internet started to become available. When the iPhone brought a
320 × 480px resolution onto the scene in 2007, we could no longer guarantee
that resolution sizes would become increasingly larger.

Looking over the landscape today, you’ll find popular devices ranging from
280px wide to 1920px wide. The rug has been pulled out from underneath us—
there is no standard resolution.

Network speeds
The speed of the network in use can have a tremendous impact on users’ web
experience. Unfortunately, network speeds vary dramatically. One visitor might
be on a very high-bandwidth wired connection; the next might be connecting on
an EDGE mobile network with terribly low speeds and horrible latency.

DD Latency
The delay in time as
data is sent from one
point to another.

ImplementIng respOnsIve DesIgn6

ptg8274462

Some devices and carriers let users create mobile hotspots with their phones
so they can connect to a mobile network using a laptop. Smartphones are fully
capable of connecting to Wi-Fi networks just as desktop computers do. The
correlation between device and network has weakened. We can still make
a guess, but it’s far less accurate than it once was.

Standards support
Thanks to the increased number of platforms, browsers, and devices, competition
is at an all-time high. New standards and features are being implemented at a faster
rate than ever before.

This increased pace of evolution unfortunately causes as much chaos as it does
stability. The word “support” is used very loosely. It’s not a Boolean property—
there are degrees. Many browsers support the same feature, but use a slightly
different syntax. Others support only some parts of a standard. Still others, the
worst culprits, manage to mix standards together with their own proprietary
implementations, creating a muddled mess of syntax.

Further muddling the situation are the many cutting-edge devices that sport
browsers with limited standards support. Consider the uber-popular Kindle.
While the Kindle is primarily used as a reading device, it also comes with a
built-in browser. The browser, as with the e-books on the device, is displayed
using e-ink—so everything is grayscale.

While not quite as bad as say, Internet Explorer 6, the Kindle’s browser isn’t
exactly what you’d call “top of the line” in terms of standards support. That
does not mean that people don’t use it. While it can be tempting to treat brows-
ers with limited standards support as second-class citizens, that perspective is
unacceptable because some devices that fall into that category are in fact brand
new and of high quality.

Input method
For a long time, we enjoyed relative stability in the way people interacted with
their computers. The keyboard has been around since the typewriter, and the
mouse has been around since the Apple Macintosh came out in 1984. (Actu-
ally, the mouse has its origins as far back as the 1950s, but it was an obscure
method of input until it came integrated with the Macintosh.)

Chapter 1 • the anywhere, everywhere web 7

ptg8274462

It seems to be a recurring theme, but mobile shook that up a bit. Suddenly,
input methods included scrollwheels, trackpads, and those horrible little arrow
keys that are so difficult to press (or perhaps I just have fat fingers).

Touch rolled onto the scene, further complicating things. Touch devices war-
rant special consideration. Targets must be made larger to accommodate the
human finger. Unlike devices with indirect manipulation, there is no hover
state to rely on. While touch devices accommodate the JavaScript events famil-
iar to mouse input, such as click, there’s a noticeable delay when compared to
native touch events. In addition, there’s the potential for more natural interac-
tions: swipe, pull to refresh, drag. All of this means that touch-enabled devices
often need different scripts and styles than their counterparts.

Context
The physical and architectural characteristics of a device are not the only factors
to consider. The context in which a device is used is another huge question mark.

Devices may be used in any number of situations: at home, on the road, at a
bus stop, at night, during the day, around friends, or around strangers. This
context can’t be associated with a specific device type, either. Phones are used
while on the go, but also while resting on the couch at home. Laptops can be
used at a desk, but also while riding a busy train.

Context is a murky topic, but not one we can ignore. We’ll come back to
the context discussion in Chapter 9, “Responsive Experiences.” For now, it’s
enough to know that understanding context is the key to moving from a Web
that responds to devices to a Web that responds to people.

This incredible diversity of devices contributes to the chaos I mentioned earlier.
But we are a species that, generally speaking, likes stability. So it should come
as no surprise that the first way we tried to deal with this diversity was to silo
user experiences into separate, optimized sites.

ImplementIng respOnsIve DesIgn8

ptg8274462

Separate sites
At the time of this writing, perhaps the most common approach to dealing
with the diversity of devices is to create separate sites that serve specific kinds
of devices (or, in some extremely misguided efforts, a specific device). Often
this means having one site for mobile and another for desktop (Figure 1.2).
Increasingly, however, it’s not unusual for a company to have a desktop site, a
tablet site, a site for mobile touch-enabled devices, and a simpler mobile site for
devices without touch support—that’s four different sites for one company.

This approach certainly has its merits. Creating a separate site for each kind of
device makes it easier to tailor the experience significantly—both the content
and the behavior. Whether this makes sense depends on the project, the busi-
ness objectives, the users, the capabilities of the team, the budget, and all those
other fun business considerations that come into play.

Figure 1.2 CNN has
separate sites for its
mobile and desktop
experiences.

Chapter 1 • the anywhere, everywhere web 9

ptg8274462

Unfortunately, it doesn’t scale well: that’s four sites that need to be updated,
tested, and maintained. One site alone can often consume several developers—
imagine the weight on each individual developer’s shoulders when that project
load is multiplied by four! Some suggest that custom content should be written
for each site, which would take even more time and effort.

Divergence
Sometimes people ask if we’ll start to see convergence, that is, if many of these
complex issues will be resolved as the range of available devices and platforms
narrows. To those people, I have one word to say: zombies.

In “The Coming Zombie Apocalypse,” undoubtedly one of the best pieces of
writing on the Web, Scott Jenson argues that this diversity will actually increase.
He posits that it’s not just the rate of change in technology that will continue to
drive diversity, but also the reduction of cost:

The commoditization of smartphone hardware is just the beginning. Plunging
prices of integrated “system on a chip” devices, paired with free Linux clones
like Android, have enabled not just cheap devices, but cheap cloud-based de-
vices. This has applied to phone products like the Sony Ericsson LiveView, and
also to home appliances like the Sonos home music system.

These examples are just the initial, telltale signs of a huge new wave of cheap de-
vices about to invade our lives—a zombie apocalypse of electronics, if you will.6

The market certainly seems to be shaping up to support his theory. Smart-
phones are becoming more and more affordable. Some versions of the iPhone,
long one of the more costly models of mobile phones, can now be had for free
with a contract.

As the cost of creating these devices goes down, it lowers the barrier for entry
and opens the gates for more and more players to get involved with more sys-
tems and more devices. We’re not looking at convergence at all: we’re looking
at a flood of new devices and form factors capable of experiencing the Web.

Even if we can keep up with the separate sites approach today, what about
tomorrow? It’s the tired example, but what happens when refrigerators are
connected to the Internet? Will we then attempt to create a website targeted
at refrigerators?

6 “The Coming Zombie Apocalypse” at http://designmind.frogdesign.com/blog/the-coming-zombie-
apocalypse-small-cheap-devices-will-disrupt-our-old-school-ux-assumptions.htm

ImplementIng respOnsIve DesIgn10

http://designmind.frogdesign.com/blog/the-coming-zombieapocalypse-small-cheap-devices-will-disrupt-our-old-school-ux-assumptions.htm
http://designmind.frogdesign.com/blog/the-coming-zombieapocalypse-small-cheap-devices-will-disrupt-our-old-school-ux-assumptions.htm

ptg8274462What happens when the screen can be anything? In 2011, Microsoft released
a prototype of a device called OmniTouch, a clunky, ugly-looking device that
sits on your shoulder. What it lacks in aesthetics, it makes up for in “wow.”
It projects its display onto anything—a wall, the floor, even your own hand
(Figure 1.3). You can then interact with the projection. It removes any con-
straints inherent in a screen—the display could be anything. I wonder when
we’ll see the first website optimized for the human hand.

Building separate sites is not a future-friendly approach. In order to survive the
upcoming swarm of devices, we must embrace the flexibility of the Web.

becoming responsive
In May 2010, Ethan Marcotte wrote an article for A List Apart titled “Responsive
Web Design.” The approach he described was both simple and revolutionary. He
used three existing tools (media queries, fluid grids, and scalable images) to cre-
ate a site that displayed beautifully at multiple resolutions (Figure 1.4).

Figure 1.3 Micro-
soft’s OmniTouch
prototype turns
any surface into a
display—even your
hand.

Chapter 1 • the anywhere, everywhere web 11

ptg8274462

Figure 1.4 Ethan
Marcotte’s original
demo site showed
that a responsively
built site could serve
multiple resolu-
tions from a single
codebase.

ImplementIng respOnsIve DesIgn12

ptg8274462

In the article, he urged designers to take advantage of the Web’s unique
characteristics:

This is our way forward. Rather than tailoring disconnected designs to each of
an ever-increasing number of web devices, we can treat them as facets of the
same experience. We can design for an optimal viewing experience, but embed
standards-based technologies into our designs to make them not only more flex-
ible, but more adaptive to the media that renders them.7

By and large, the article was praised, and rightfully so. Marcotte demonstrated
that it was possible to deliver a great experience to a variety of devices, not by
ignoring their differences and trying to impose control, but by letting go and
embracing the fluidity of the Web.

Let’s start by setting the record straight: a responsive site does not equal a
mobile site. This point causes a lot of confusion and heated debate. Of course,
much of the appeal of a responsive approach is that it can be part of a mobile
strategy, but it’s anything but a quick fix.

A responsive site is no more a mobile site than it is a desktop site, or a tablet site.
Marcotte made this clear in his post, “Toffee-Nosed”:

When I’m speaking or writing about responsive design, I try to underline
something with great, big, Sharpie-esque strokes: responsive design is not about

“designing for mobile.” But it’s not about “designing for the desktop,” either.
Rather, it’s about adopting a more flexible, device-agnostic approach to design-
ing for the web.8

This device-agnostic concept is incredibly important. We can’t know what de-
vices people will use to access the Web. No other medium is accessible by such
a wide spectrum of devices or by so many people. As designers, we need to
capitalize on this.

We’re far from having it all figured out, but thanks to a lot of hard work and
experimentation, the responsive approach is much improved from its first
vision. The same three elements (media queries, fluid grids, and scalable
images) remain at its core, but they are just the tip of the iceberg.

As it turns out, a successful responsive approach builds upon the very same
principles laid down by progressive enhancement. It is, to be blunt, progressive
enhancement on steroids.

7 “Responsive Web Design” at www.alistapart.com/articles/responsive-web-design/
8 “Toffee-Nosed” at http://unstoppablerobotninja.com/entry/toffee-nosed/

DD Device-agnostic
Anything (compo-
nent, layout, etc) that
is designed to be
compatible across
different device
types and operating
systems.

Chapter 1 • the anywhere, everywhere web 13

www.alistapart.com/articles/responsive-web-design/
http://unstoppablerobotninja.com/entry/toffee-nosed/

ptg8274462

More on being future friendly
You’ll see the phrase future friendly quite a few times in this book. Specifically, this refers to the
Future Friendly manifesto.

Cooked up by a group of mobile developers, the Future Friendly manifesto is a set of prin-
ciples to consider when choosing which web design solutions to implement. These principles
are intentially high level. While specific techniques will fade in and out of relevancy over time,
the values they are predicated on will remain constant. Keep these principles in mind when
deciding which techniques to implement in your own projects.

Quoting from the manifesto at http://futurefriend.ly:

Laser Focus

We can’t be all things on all devices. To manage in a world of ever-increasing device
complexity, we need to focus on what matters most to our customers and businesses.

Orbit Around Data

An ecosystem of devices demands to be interoperable, and robust data exchange is
the easiest way to get going. Be responsive to existing and emerging opportunities
by defining your data in a way that: enables multiple (flexible) forms of access and
notifications; uses standards to be interoperable; focuses on long-term integrity;
includes meaningful and permanent references to all content; and supports both
read and write operations.

Universal Content

Well-structured content is now an essential part of art direction. Consider how
it can flow into a variety of containers by being mindful of their constraints and
capabilities. Be bold and explore new possibilities but know that the future is likely
to head in many directions.

Unknown vessel, Identify

Reacting to every device variance makes inclusive design extremely challenging.
A high-level, close-enough set of standards for device types can simplify the process
of adaptation.

Command your Fleet

Having a wide range of devices in our lives enables us to distribute tasks and infor-
mation between them. When an experience is managed within a device collection,
each device can tackle the interactions it does best. This negates the need to tailor
all aspects of a service to every device and allows us to work within an ecosystem
of device capabilities instead.

ImplementIng respOnsIve DesIgn14

http://futurefriend.ly

ptg8274462

Progressive enhancement
For a long time, the web community advocated graceful degradation, a concept
borrowed from other areas of computer science, such as networking. The idea
was that when you created a site using all the newest features (for the most
capable browsers) you made sure that older browsers wouldn’t choke on the
markup and could still access the content.

That might not sound entirely evil, but what it evolved into was a mindset
that didn’t put much, if any, thought into how these older browsers got to
experience the content. As long as it was available in some form—no mat-
ter how painful the experience might be—you had successfully practiced
graceful degradation.

The concept was not particularly future friendly. It showed a lack of respect for
users of older browsers and ignored the increasing reality that there were new
devices (mobile) that also featured less capable browsers.

In 2003, Steven Champeon and Nick Finck gave a presentation at South by
Southwest (SXSW) in which they introduced a new concept that Steve named

“progressive enhancement.”9

Progressive enhancement essentially flips graceful degradation on its head.
Instead of building for the latest and greatest browsers first and letting the less-
capable browsers get by on what they can, you create a baseline experience first.
This baseline experience uses semantic markup and structure and focuses on
presenting the content in a clean, usable form.

You then start layering on the presentation and interactivity in a way that
preserves that baseline experience, but provides a richer experience for more
capable browsers.

Aaron Gustafson, a longtime advocate of the approach, compares progressive
enhancement to a peanut M&M: the content is the peanut, the presentation
(CSS) is the chocolate, and the interactivity (JavaScript) is the shell. The con-
tent can stand by itself, but as you layer functionality on top, it becomes a much
more rich and complete experience (Figure 1.5).10

9 “Inclusive Web Design for the Future” at www.hesketh.com/thought-leadership/our-publications/
inclusive-web-design-future

10 Aaron Gustafson, Adaptive Web Design: Crafting Rich Experiences with Progressive Enhancement
(Easy Readers, 2011)

Chapter 1 • the anywhere, everywhere web 15

www.hesketh.com/thought-leadership/our-publications/inclusive-web-design-future
www.hesketh.com/thought-leadership/our-publications/inclusive-web-design-future

ptg8274462

Responsive design uses the same kind of thinking to provide appropriate con-
tent and layout to a variety of devices. You start by creating a baseline experi-
ence and, with the use of techniques such as fluid grids and media queries, you
enhance the experience for devices with more capabilities and larger screens
(not always synonymous!).11

why another book on
responsive design?
Make no mistake: Executing responsive design correctly is no simple feat. It
requires a complete overhaul of the way we approach the Web. Our tools and
processes were not created with our current challenges in mind. We need to
step back and ask ourselves some questions:

•	 Does it make sense for the desktop to be the default experience?

•	 How do we adjust the work process to accommodate designing and
prototyping for many different devices and screen sizes?

•	 How can we store content in a more structured manner?

11 Also from Aaron Gustafson, Adaptive Web Design: Crafting Rich Experiences with Progressive Enhancement.
Photo used by permission.

Figure 1.5 The three
layers of a peanut
M&M work as a nice
analogy for progres-
sive enhancement.
The content is the
peanut, the presenta-
tion is the chocolate
and the interactivity
is the shell.11

ImplementIng respOnsIve DesIgn16

ptg8274462

•	 Are CMSs (content management systems) and WYSIWYG (What You
See Is What You Get) editors inherently flawed?

•	 Should we reconsider our long-standing aversion to user agent (UA) strings?

•	 How do we make content more portable?

•	 How do we support the explosion of devices still to come in the future?

•	 Are current standards (HTML, CSS) built to withstand a Web this diverse?

•	 How can we embrace different contexts without losing a sense of coher-
ence between experiences?

Some of those questions are easily answered, some are difficult, and some are
still being debated. When Marcotte wrote that article in May 2010, he did
more than introduce a new technique: he kickstarted a much larger conversa-
tion involving the necessary maturation of our profession.

That’s what this book is about—embracing the flexibility of the Web and prac-
ticing responsible responsive design. The upcoming chapters will guide you
through the techniques you’ll need to enhance your sites and create pleasant
user experiences regardless of device. There will be answers, yes, but there will
also be questions. Such is the nature of any medium that evolves as rapidly as
the Web.

what’s covered?
The book consists of nine chapters, including the introduction you’re reading right
now. The next three chapters introduce the three tenets of responsive design:

•	 Fluid Layouts

This chapter discusses how to move away from fixed-width designs and
start building fluid layouts and fluid typography.

•	 Media Queries

This chapter provides an introduction to media queries: types of media
queries, how to use them, and how to determine breakpoints.

•	 Responsive Media

This chapter looks at fixed-width elements such as images, video, and
advertising to see how they can be incorporated into a responsive layout.

DD User agent
strings

A string passed
by the user agent
that identifies your
browser as well as
other information
such as the operating
system version.

Chapter 1 • the anywhere, everywhere web 17

ptg8274462

With the three tenets firmly established, the rest of the book examines how
responsive design impacts the rest of the web design process:

•	 Planning

This chapter discusses the steps necessary for successfully planning a
responsive site.

•	 Design Workflow

This chapter examines how responsive design affects the design process.
Specifically, it looks at the deliverables and steps in the responsive design
process, and some of the changes we need to make.

•	 Responsive Content

This chapter discusses how to plan for, create, and display content in a
responsive layout.

•	 RESS

This chapter covers how to combine the power of responsive design with
detection methods such as client-side feature detection and server-side
user agent detection to make more robust solutions.

•	 Responsive Experiences

The final chapter looks at how to apply a responsive mindset to the entire
web experience. Specifically, it shows you how to use context and unique
device capabilities to create experiences that truly adapt to fit the needs
of the user.

who is this book for?
This book is intended for designers and developers who want to start creat-
ing sites that display and function well on a myriad of devices. You don’t need
any experience with responsive design—the first few chapters will get you
up to speed.

You should, however, be comfortable with HTML and CSS and at least familiar
with JavaScript. Chapter 8, “RESS,” also uses some PHP code, but the concepts
should be recognizable even without much knowledge of PHP.

ImplementIng respOnsIve DesIgn18

ptg8274462

Code examples
Throughout the book, various examples of code are included. These look like this:
1.	 <html>

2.	 <head>

3.	 	 <title>Geolocation</title>

4.	 	 <meta name=”viewport” content=”width=device-width” />

5.	 </head>

6.	 <body>

7.	 	 <p>Testing the geolocation API.</p>

8.	 	 <div id=”results”></div>

9.	 </body>

Changes in the code are highlighted so they can be easily identified.

In some cases, to conserve space, code that remains unchanged has been col-
lapsed. This is signified by three dots like line 7 below:
1.	 <html>

2.	 <head>

3.	 	 <title>Geolocation</title>

4.	 	 <meta name=”viewport” content=”width=device-width” />

5.	 </head>

6.	 <body>

7.	 	 ...

8.	 </body>

The companion site
All the code in this book is available on the companion site at http://
implementingresponsivedesign.com. The companion site is also the place to
check for errata and additional resources about the topics discussed in this book.

Most code snippets in the book are used to build a single-page layout for a
fictional magazine called Yet Another Sports Site. While I do recommend work-
ing along with the text, it’s certainly not necessary: this isn’t a workbook in any
sense and the concepts and discussion can typically be followed without open-
ing up a code editor.

Now that the housekeeping is done, let’s get this party started, shall we?

Chapter 1 • the anywhere, everywhere web 19

http://implementingresponsivedesign.com
http://implementingresponsivedesign.com

ptg8274462

A word about the JavaScript in this book
The average page online now weighs a ridiculous 1MB. Of that 1MB,
200KB comes from JavaScript, up 52.6 percent over the last year. This
is a very troubling trend.12

A lot, though admittedly not all, of this JavaScript bloat can be attrib-
uted to the industry’s increasing reliance on frameworks and plugins.
It’s quite tempting to reach for these pre-packaged solutions, because in
many cases they’re already well tested and documented. But they’re not
always necessary. Depending on the problems you’re trying to solve, you
can often get away with using only a fraction of the code.

In this book, all of the JavaScript is written without the help of any popu-
lar frameworks. To be clear, I’m not campaigning against frameworks. In
fact, you’ll encounter several helpful jQuery plugins in this book. What
I’m arguing for is the careful consideration of what you include on your
page. If you need a framework, use it. If you don’t, then it may make
sense to roll your own code and save some page weight.

12 Comparing the June 15, 2012 and June 15, 2011 runs at http://httparchive.org

ImplementIng respOnsIve DesIgn20

http://httparchive.org

ptg8274462

Chapter 2

Fluid layouts
a very large Oak was uprooted

by the wind. . . .It fell among some reeds,
which it thus addressed: “I wonder how you,

who are so light and weak, are not entirely
crushed by these strong winds.” they replied,

“You fight and contend with the wind, and
consequently you are destroyed; while we on

the contrary bend before the least breath of air,
and therefore remain unbroken, and escape.”

—“the Oak and the reeds,” aesOp’s Fables

ptg8274462

In “The Oak and the Reeds,” the large oak tree and the small reeds are blown
this way and that by the wind. The oak tree tries to stand tall and rigid, resisting
the powerful, scattering wind. Eventually, it falls, defeated.

The reeds, on the other hand, bend. It’s not just that they’re willing to bend,
but that they’re able. They don’t fight the wind; they allow themselves to move
with it. As a result, they bend and twist, but remain rooted.

For a long time, we’ve built our websites to be oak trees: rigid and fixed-width.
They look fantastic, until they meet with the inevitable unpredictably of the
Web. Instead of fighting this unpredictability, we need to embrace it.

That’s the point that John Allsopp was making all the way back in 2000 when he
wrote his seminal article for A List Apart entitled “A Dao of Web Design.”1 In an
industry where what is best practice one day can be laughable the next, All-
sopp’s insights have proved to be incredibly prescient. He argued that the web
community needed to embrace the flexibility of the Web and stop viewing the
lack of control as a constraint:

The Web’s greatest strength, I believe, is often seen as a limitation, as a defect. It
is the nature of the Web to be flexible, and it should be our role as designers and
developers to embrace this flexibility, and produce pages that, by being flexible,
are accessible to all.

Allsopp recognized that flexibility and unpredictability weren’t things we
should be struggling against. They are features, not bugs. They make the Web
unique, and a much more powerful medium than print has ever been.

With the increasingly diverse landscape of devices, the inherent flexibility and
unpredictability of the Web have become much harder to ignore. As a result,
twelve years later the industry is finally catching up to the ideas Allsopp dis-
cussed in that article. The first, small step toward embracing this flexibility is to
create fluid layouts for our sites, to be responsive to the dimensions of the device.

In this chapter, you’ll learn:

•	 The four different types of layouts

•	 The different ways to size fonts, and which method to use

•	 How to create fluid grid layouts

•	 How to make fixed-width resources, like images, play nicely in a fluid layout

•	 How to combine fixed and fluid-width columns using display:table

1 A Dao of Web Design at www.alistapart.com/articles/dao/

ImplementIng respOnsIve desIgn22

www.alistapart.com/articles/dao/

ptg8274462

layout options
Understanding when a flexible layout might be the best choice requires that we
review the other available options. Only by understanding what each offers can
we make the right decision so our sites appear to the best advantage in a variety
of environments.

In her excellent book, Flexible Web Design2, Zoe Mickley Gillenwater defined
four types of layouts: fixed-width, liquid (or fluid), elastic, and hybrid.

Each approach has its own strengths, constraints, and challenges.

Fixed-width
In fixed-width layouts the site width is constrained by a specific pixel measure-
ment, 960px being the most commonly chosen width today. In 2006, Cameron
Moll wrote a blog post entitled “Optimal width for 1024px resolution?” in
which he dissected what the “optimal” width was to target for the increasingly
popular 1024 resolution. After browser chrome was taken into consideration,
that left somewhere between 974 and 984 pixels to play with. The number 960
was much friendlier for grid-based layouts (it’s easily divisible by 3, 4, 5, 6, 8, 10,
12 and 15 and therefore offers a variety of grid options) and worked well with
the Interactive Advertising Bureau’s (IAB) standard ad sizes3. As a result, that
measurement stuck.

Fixed-width layouts are the most common implementation on the Web.
A fixed-width layout gives you the illusion of having a lot of control. Know-
ing exactly the width at which your site will display lets you create graphically
intense designs that will look fairly consistent across different screens.

The biggest problem with fixed-width layouts is that you must operate under
a lot of assumptions. When you determine how wide your site will be, you’re
making a guess as to what dimensions will best serve the largest percentage
of visitors. This is a lot trickier than it seems. Even before the introduction of
devices such as smartphones and tablets, there was a great deal of variability in
the screen sizes used by visitors. That was just the start of it. Some people have

2 Zoe Mickley Gillenwater, Flexible Web Design (New Riders, 2008).
3 Optimal width for 1024px resolution at www.cameronmoll.com/archives/001220.html

Chapter 2 • Fluid layouts 23

www.cameronmoll.com/archives/001220.html

ptg8274462

browsers that are not maximized to the full width of their screens. Many others
have plug-ins installed that display a sidebar in the browser, greatly reducing
the actual real estate available for the site.

The “consistency” that a fixed-width design provides is also a bit misleading.
If your site is 960px wide and a visitor has a smaller screen (let’s say 800px
wide), then she’ll see only a portion of your site and an ugly horizontal scroll-
bar (Figure 2.1).

Figure 2.1 When the
screen is narrower
than the width of a
fixed-width site, the
visitor is greeted by
the dreaded horizon-
tal scrollbar.

ImplementIng respOnsIve desIgn24

ptg8274462

Larger screens are not immune to issues either. If someone with a large moni-
tor views your 960px-wide site, she’ll be met with a large amount of unplanned
white space. White space is good, as part of a design. An unanticipated over-
abundance of white space is beneficial to no one.

The rigidity of fixed-width layouts is even more of an issue in today’s widely di-
verse ecosystem of devices. Many of the newest and most capable phones and
tablets display sites zoomed out so they fit on the screen. These devices provide
a pinch-to-zoom feature to drill down from there. While this experience is bet-
ter than not being able to zoom in or access the site at all, it is still cumbersome
and far from enjoyable.

Fluid layouts
In fluid layouts, dimensions are determined by percentages, not pixel measure-
ments. As a result, they’re much more malleable. So you may have a primary
column that’s sized at 60% of the width of the container, a right sidebar column
sized at 30%, and a gutter of 10% in between. Using a layout defined in that
manner means that it doesn’t matter if the user is using a desktop computer
with a browser width of 1024px, or a tablet sized at 768px wide: the widths of
the elements in the page will adjust accordingly.

A design built on a fluid layout avoids many of the problems that a fixed-width
layout presents. Horizontal scrollbars can be prevented, for the most part.
Since the site can adapt its width based on the width of the browser window,
the design can adjust to better accommodate the available space, eliminating
the unwanted white space that can occur with a fixed-width layout.

Implementing responsive strategies, such as media queries and styles for opti-
mizing at different resolutions, is much easier with fluid layouts. (We’ll discuss
these strategies in later chapters.) There are fewer issues to fix, so you have
fewer CSS rules to write. However, a fluid layout by itself is not enough to en-
sure that a design looks good on everything from a smartphone to a TV. Line
lengths can become too wide on large displays, and too narrow on small dis-
plays. It’s a start, but there’s a reason why this isn’t the only chapter in the book.

CC Note
While Gillenwater
used the term liquid
in her categorization;
in this book, these
are considered fluid
layouts.

Chapter 2 • Fluid layouts 25

ptg8274462

Elastic layouts
Elastic layouts are very similar to fluid layouts, except that their constraints are
determined by the type size—typically using the em measurement. One em is
the equivalent of the currently defined font-size. Say, for example, the body text
is in a font-size of 16px. In that case, 1em equals 16px and 2em equals 32px.

Elastic layouts provide strong typographic control. A large body of research
recommends a line length between 45 and 70 characters for ideal readability.4

With an elastic layout, you can define the width of the container to be, say,
55em. This would ensure that the width of the container always maintains an
appropriate line length.

Another benefit of elastic layouts is that as a visitor increases or decreases the
font size, elements defined with elastic widths will scale in proportion to that
font size. We’ll talk more about this in the discussion of sizing fonts, later in
this chapter.

Unfortunately, elastic layouts can bring back the dreaded horizontal scrollbar.
If you have a font-size of 16px and you define the width of the container to be
55em, then any screen below 880px (16 × 55) will display a horizontal scroll-
bar. The issue can be even more unpredictable than with fixed widths. If the
visitor increases the font-size to say, 18px, the width of your container just got
changed to 990px (18 × 55).

Hybrid layouts
The final layout option is to take a hybrid layout, which combines two or more
of the preceding layouts.

For example, let’s say you’re using a 300px ad space. You might make the decision
to have the sidebar column where the ad resides set to a fixed width of 300px, but
use a percentage for the other columns. This ensures that the supplied graphics
for the ads can be designed specifically for 300px. (Considering the rigidity of
third-party ad services, this is a very important consideration.) However, the rest
of the layout will expand to fill the remaining space in the browser.

4 The most frequently cited source is Robert Bringhurst’s The Elements of Typographic Style (Hartley &
Marks Publishers, 1992).

ImplementIng respOnsIve desIgn26

ptg8274462

Using floats, this approach can get very messy, very quickly. If you set the side
column to be 300px and the main column to be 70%, then you’ll be right back
to having a horizontal scroll bar when the screen size falls below 1,000 pixels.
That’s the measurement where the 300px sidebar exceeds the 30% of the view-
port that it’s allotted, leaving less than the 70% required for the main column.
Thankfully, there’s an alternative approach to creating hybrid layouts, which
we’ll discuss later in the chapter.

If you managed to make it through that paragraph without sweating and having
flashbacks to high school math class, I applaud you.

Which approach is the most responsive?
So which is the right method to be responsive to various devices and environ-
ments? Ultimately, it depends on your specific project. Each approach has its
own benefits and limitations.

Most often, the right answer will be one of the more flexible layouts—fluid,
elastic, or hybrid—because they are all much more future friendly than a fixed-
width layout.

It is possible to switch between fixed-width layouts using media queries, but
it’s still a limited solution. A “switchy” approach would let you serve a few
resolutions very well, but everything in between would suffer. The visitor is
completely at the mercy of when you decide to change the layout. If her device
doesn’t fit the bill, her experience is little better than if you’d done nothing at all.

So while a “switchy” approach is a step in the right direction, it’s a little like
taking up jogging only to follow each morning’s run with 30 minutes on the
couch eating ice cream. It’s probably better than nothing, but you’re not getting
as much out of it as you could.

In contrast, using a fluid layout gets you at least part of the way there. Even
without the aid of media queries, your design will be able to transition between
different viewport sizes, even if there are some imperfections.

Once you introduce media queries, you eliminate the majority of the concerns
that come with elastic or fluid layouts (see Chapter 3, “Media Queries”). The
result is that your fluid layout does much of the work for you; you have fewer
breakpoints to create and less CSS to write. With a strong, fluid layout, media
queries become a way to adjust the design instead of completely rebuilding it.

CD Viewport
The browser’s visible
screen area.

CD Media queries
Media queries allow
you to control which
styles are applied
based on device
properties such as
width, orientation
and resolution.

CD Breakpoint
The point at which a
new media query is
applied. For example,
a breakpoint at
980px would mean
that a new media
query kicks in when
the browser width
is above or below
that number.

Chapter 2 • Fluid layouts 27

ptg8274462

sizing fonts
Embracing the fluidity of the Web in your designs means starting by flexibly
sizing your fonts. You can size fonts on the Web using any of a number of differ-
ent units, but the primary options are: pixels, percentages, and ems.

Pixels
For quite some time, pixels were the preferred method for sizing fonts. The rea-
son is simple: you have precise control over how a browser sizes the text. If you
set the font-size to 18px, each browser will display that size at precisely 18px.

Unfortunately, this control comes at a cost. For starters, with pixel-sized fonts,
there’s no cascade—that is, the font size of the parent element has no effect on
the font size of the child element. This means that you need to set a specific
pixel size for each element where you want the text to display at a different
size. This can be a pain for maintenance. If you decide you want the font size to
increase across the board, you’ll have to change each of those values.

More importantly, pixel-sized fonts are a potential accessibility concern. All
major browsers allow the user to zoom in or out of a page. There are two ways a
browser handles this. The first is to simply apply the zoom to everything on the
page. So if a visitor zooms in, every element on a page will increase in size—
not just the text. This method allows users to zoom regardless of how the font
is sized (Figure 2.2).

The other method is to resize the text itself, but not the other elements on the
page. This was a common behavior for a long time, and it is still implemented
by some browsers.

Pixel-sized fonts, unfortunately, do not scale in Internet Explorer. This means
that for anyone using a version of the browser prior to IE9, where font resizing
was the default (or if they have turned font resizing on in the latest version), the
size of the fonts on your page will not be adjustable.

The resizing issue also applies for many older, pre-touch devices. In some cases,
nothing will scale. In other cases, parts of the page might, but the fonts would
stay the same size, resulting in an unseemly site.

ImplementIng respOnsIve desIgn28

ptg8274462

This ability to resize the text puts the user in control. In addition to being the
considerate thing to do, this can also improve the accessibility of your site.
Some visitors may have difficulty reading text below a certain size. Allowing
them to increase the font size means that they can still enjoy your content.

Sizing fonts in pixels is also not a very future-friendly approach. Different
devices have different screen sizes and pixel densities. As a result, a pixel-sized
font that looks good on one device may be too small, or too large, on another
screen (for more on that, see “Default font sizes” later in this chapter). Using
pixels to size fonts is one of the best examples of fighting against the flexibility
of the Web.

Ems
A much more flexible, and increasingly popular, way of sizing fonts is to use the
em unit instead. As discussed earlier, one em is equal to the current font size. If,
for example, the body text is sized at 16px, then:

1em =16px

2em = 32px

Ems are resizable across browsers. They also cascade—which can be both a good
thing and a bad thing. It’s good in the sense that it eases maintenance. Sizing the
fonts of your elements relatively means you need only adjust the initial baseline
and the rest of the content will adjust automatically—proportions intact.

Figure 2.2 On some
newer browsers,
the entire page is
zoomed in, not just
the fonts.

Chapter 2 • Fluid layouts 29

ptg8274462

That ability to cascade can complicate things as well. For example, consider the
following HTML:

<body>

	 <div	id=”main”>

	 	 <h1>Question	One	Please	choose	an	answer	from	below.	

	 	 				</h1>

<p>In	which	book	did	H.G.	Wells	write:	“Great	and	strange	ideas		

transcending	experience	often	have	less	effect	upon	men	and	women	than	

smaller,	more	tangible	considerations.”</p>

	

	 	 The	Invisible	Man

	 	 The	War	of	the	Worlds

	 	 The	World	Set	Free

	

</div>

</body>

The HTML is styled with the following CSS:
body	{

	 font-size:	16px;	/*	base	font	size	set	in	pixels	*/

}

h1	{

	 font-size:	1.5em;	/*	24px	/	16px	*/

}

span	{

	 font-size:	1em;	/*	16px	/	16px	*/

}

In the example above, the base font-size is set to 16px. Our	h1 element has a
font size of 1.5em, the equivalent of 24px. We want our span to render at 16px,
so we set it to 1em. The problem is that the context has changed. The base is no
longer the 16px body font, it’s the 24px font size attached to the h1 element. So,
instead of our expected 16px font, our span will actually display at 24px.

Instead, we need to adjust the font-size of the span to bring it back down to size:
span	{

	 font-size:	.666666667em;	/*	16px	/	24px	*/

}

ImplementIng respOnsIve desIgn30

ptg8274462

Try to structure your CSS and HTML to keep font sizes predictable. For ex-
ample, if you use your base font-size for the majority of your content, and only
resize things such as header elements, you can avoid the issue entirely. Likewise,
if your HTML is carefully crafted, you can sort out these issues very easily by
the use of a descendant selector.

Percentages
Fonts sized in percentages, like ems, are also resizable and they cascade. Again,
as with ems, if the base font-size is 16px, then 100% equals 16px and 200%
equals 32px.

While theoretically there isn’t a major difference between ems and percentages,
it’s slowly becoming more and more common that ems are the preferred unit
of measurement for fonts on the Web. There really isn’t a technical reason for
this, it just makes sense to use ems when sizing text since the em unit is directly
related to the size of the text.

However, courtesy of everyone’s favorite browser, Internet Explorer, there is an
issue with using the em unit to set the base font-size for your document. If the
base font-size is defined using ems, Internet Explorer greatly exaggerates how
small or large the font should be when resized. Let’s say you define the base
font-size to be 1em and you set the font-size for your h1 elements to be 2em.
In most browsers, the h1 elements will behave exactly as you would expect:
they will be approximately twice as large. In Internet Explorer, they’ll be much
larger, thanks to this little bug.

You can get around this issue by setting the base font-size on your body using
a percentage.

body	{

	 font-size:	100%;

}

Remarkably, the default font-size is a relatively consistent 16px across most
browsers and devices (see the sidebar for a little more information). By setting
the size of the body font to 100%, you ensure that the content will be resizable,
without exaggeration. From there, you can size the remainder of your type rela-
tively using ems.

CD Descendant
selector

A CSS selector
that matches any
elements that are
descendants of a
specified element.

Chapter 2 • Fluid layouts 31

ptg8274462

Default font sizes
For a while now it’s been recognized that the default font-size on the
body for desktop browsers is about 16px. So if you set the font-size on
the body to 100%, you get a consistently sized font.

This behavior is not always true for other device types. For example, when
I tested this on a BlackBerry running the Blackberry 6.0 operating system,
the default font-size was 22px. The Kindle Touch is even more dramatic
in its variance: it starts with a default size of 26px.

Before you start throwing things, there is a reason for this behavior. Many
of these new devices have a high pixel density, so a 16px font would look
quite small. The majority of devices get around this by reporting a differ-
ent resolution to browsers. For example, the iPhone 4 has a resolution of
640x960 but reports a resolution of 320x480 to the browser.

Other devices, like the Kindle Touch, report their full resolution but
increase the default font-size to compensate.

Ultimately, it is not the actual pixel size that’s important: it’s the read-
ability of the font on the display that matters. Keep using 100% for the
base font-size, but keep in mind that the pixel measurements of the fonts
in use may not be 16px (this is a good case for using em units to define
your media queries. We’ll talk about this in the next chapter.)

Bonus round: rems
There’s another flexible option for sizing fonts that has a lot of potential: the rem
(“root em”) unit. The rem unit behaves just as the em unit with one important dif-
ference: it sizes relative to the font-size of the root element—the HTML element.

Using rems, it would then be possible to avoid the cascading issues that
occur with nested elements. Let’s update the CSS so that the list items are
styled using rems:

html	{

	 font-size:	100%;	/*	equates	to	~16px	*/	

ImplementIng respOnsIve desIgn32

ptg8274462

}

h1	{

	 font-size:	1.5em;	/*	24px	/	16px	*/

}

span	{

	 font-size:	1rem;	/*	16px	/	16px	*/

}

In the example above, the h1 element still uses a 24px font. However, the span
element will now display at 16px. By using the root em unit, elements inherit
their font size from the html element—not from the containing div.

The one caveat to rems is mobile browser support. In general, they are sup-
ported pretty well on the desktop: Internet Explorer 9+, Firefox 3.6+, Chrome
6.0+, Safari 5.0+, and Opera 11.6+. In addition, iOS 4.0+ and Android 2.1+
provide support. Unfortunately, at the time of this writing, other mobile plat-
forms (including the popular Opera Mobile) do not support the rem unit.

To accommodate these cases, you would have to serve up a pixel-sized
fallback option.

span	{

	 font-size:	16px;

	 font-size:	1rem;

}

Using the above, browsers that support the rem unit will use that declaration,
since it is declared last. Browsers without rem support will use the first declara-
tion set in pixels, and ignore the rem declaration.

Which approach is the most responsive?
There are some trade-offs here to consider when deciding which approach to take.
Using ems not only lets your type scale, but it can also make maintenance easier.
If you decide to increase the font-size across your site, simply change the percent-
age applied to the body and you’re all set. With rems, since you have to use a pixel
fallback, you’ll have to update any pixel-sized element throughout your code.

For the remainder of this book, we’ll be using a percentage on the body and
ems thereafter.

CD Tip
Many of the mainte-
nance concerns can
be alleviated by using
a CSS preprocessor
like SASS (http://
sass-lang.com) or
LESS (http://lesscss.
org) and making use
of variables.

Chapter 2 • Fluid layouts 33

http://sass-lang.com
http://sass-lang.com
http://lesscss.org
http://lesscss.org

ptg8274462

Converting from pixels
While it would be nice to believe that every project you work on will start
fresh, thereby allowing you to design fluidly in the browser from the get-go, the
reality is that’s not very likely. Most projects will involve a transition, and in the
meantime, you need to be able to convert those fixed sizes to something a bit
more fluid.

Given that, let’s take a look at that same snippet of text, completely sized in
pixels (Figure 2.3).

body	{

	 font-size:	16px;

	 font-family:	Helvetica,	sans-serif;

}

h1	{

	 font-size:	24px;

}

span	{

	 font-size:	12px;

}

For starters, the body text is sized at 16px. The h1 element has a font-size
of 24px, while our span has a font-size of 12px.

Figure 2.3 The text
sized in pixels: beau-
tiful, but completely
inflexible.

ImplementIng respOnsIve desIgn34

ptg8274462

Converting this to a more flexible measurement is relatively simple. Start by
setting the body text size:

body	{

	 font-size:	100%;

	 font-family:	Helvetica,	serif;	

}

Remember that setting the size as 100% means that, for most browsers, the
base font-size will be 16px. It also gives us a flexible base to build on.

Converting the rest of the text to ems is simple, using a very basic formula.
I know, I know—if you wanted to do math you would have bought a book
on calculus. Thankfully you don’t need to know the cosine of the square root
of pi to be able to figure this out. The formula is simply:

target / context = result

For example, consider the h1 element. The target is 24px. The context is the
font-size of the containing element—in this case, 16px on the body. So we
divide 24 by the context of 16 to get 1.5em:

h1	{

	 font-size:	1.5em;	/* 24px / 16px */

}

Notice the comment following the declaration. As someone who frequently
scratches his head when reviewing code I wrote the night before, let alone
a month ago, I highly recommend using a comment to help you remember
where that measurement came from.

Now we can apply that same formula to the span element. Since it’s contained
within the h1 element, the context has changed; it’s now the h1 element. As a
result, we need to set the span to have a font-size of .666666667em (16/24).

After we plug that in as well, the CSS looks like this:
1. body	{

2. font-size:	100%;

3. font-family:	Helvetica,	sans-serif;

4. }

5. h1	{

6. font-size:	1.5em;	/*	24px	/	16px	*/

7. }

8. span{

9. font-size:	.5em;	/*	12px	/	24px	*/

10. }

Chapter 2 • Fluid layouts 35

ptg8274462

And there you have it—flexibly sized fonts. Now if we have to change the body
font size, the proportions between the new size and the header elements will
remain unchanged (Figure 2.4).

Grid layouts
Setting designs to a grid is an incredibly popular practice, one that predates the
Web by many decades. Grids help to achieve balance, spacing, and organization
on a site. A well-implemented grid system makes your site feel less cluttered
and improves its readability and scanability.

In Ordering Disorder: Grid Principles for Web Design5, Khoi Vinh highlights four
major benefits of grid design, all of which add up to a design that feels more
connected:

5 Khoi Vinh, Ordering Disorder: Grid Principles for Web Design (New Riders, 2010).

Figure 2.4 The
flexibly sized fonts
look identical to the
original fonts sized
in pixels. But now
when the font size
is increased, the
proportions remain
unchanged.

CR Tip
Visit http://
implementing
responsivedesign.
com/ex/ch2/
ch2.1.html to see
this in action.

CC Note
For more detailed
information about
grids, read Khoi
Vinh’s book, or get
a copy of Mark
Boulton’s Designing
Grid Systems video
series.

ImplementIng respOnsIve desIgn36

http://implementingresponsivedesign.com/ex/ch2/ch2.1.html
http://implementingresponsivedesign.com/ex/ch2/ch2.1.html
http://implementingresponsivedesign.com/ex/ch2/ch2.1.html
http://implementingresponsivedesign.com/ex/ch2/ch2.1.html
http://implementingresponsivedesign.com/ex/ch2/ch2.1.html

ptg8274462

•	 Grids add order, creativity, and harmony to the presentation of
information.

•	 Grids allow an audience to predict where to find information, which aids
in the communication of that information.

•	 Grids make it easier to add new content in a manner consistent with the
overall vision of the original presentation.

•	 Grids facilitate collaboration on the design of a single solution without
compromising the overall vision of the solution.

A word about frameworks
There’s no shortage of grid-based frameworks to be found online. These
frameworks come with templates and CSS rules to help you quickly cre-
ate pre-determined grid layouts. Some are flexible, some are not. Most
have somewhere between 12 and 16 columns. It can be tempting to dust
off your favorite framework with each new project, but we can be a bit
more creative than that.

While there’s nothing inherently wrong with a 12-column grid, using it
for each and every site leads to a boring, predictable layout. To reap the
full benefits of a grid-based approach, you need to consider it freshly for
each project.

Don’t be afraid to mix it up and implement a three- or five-columm grid.
Some of the most beautifully designed sites on the Web don’t use anything
as extensive as a 12-column layout. Sometimes, simpler really is better.

Content-out
The first thing to do when setting up a grid is determine the canvas. In graphic
design, the canvas is your paper. Its dimensions determine the grid. You sub-
divide the canvas size into the number of columns you want (3, 5, 9, and yes,
even 12) and work from there.

As we’ve already discussed, on the Web, you don’t have these kinds of dimen-
sions to work with. Instead, you have to work content-out: let the content
define the grid.

Chapter 2 • Fluid layouts 37

ptg8274462

Just to be clear, when I say “content” I’m not specifically talking about text.
Content takes many forms: ads, videos, images, text. Each of these different
types of content can determine your grid. For example, if you’re a publishing
company that makes its revenue largely from advertising, then it might be wise
to determine your grid around one or two IAB ad sizes. Likewise, if you’re
redesigning a large site with a lot of legacy images, then it might make sense to
create your grid around those dimensions.

Letting your content define the structure of your site is good design, but it’s
also practical. Instead of trying to shoehorn legacy images or ad spaces into a
predefined grid, build your grid to support them from the very beginning. This
leads to more cohesive design from page to page.

Enough chatter already, let’s do some styling.

Setting the grid
Let’s kick things off by working for the fictional sports publication, Yet Another
Sports Site (original, I know). Specifically, we’re going to develop a grid for the
article page. Some default styles are already in place for color and typography.
(For demonstration purposes, we’ll have to wait until the next chapter to in-
clude the header and footer.) Let’s have a look at what we’re working with:
1. <body	id=”top”>

2. <div	id=”container”>

3. <article	class=”main”	role=”main”>

4. <h1>That	guy	has	the	ball</h1>

5. <p	class=”summary”>In	what	has	to	be	considered	a		

	 	 	 development	of	the	utmost	importance,	that	man	over		

	 	 	 there	now	has	the	ball.</p>

6. <p	class=”articleInfo”>By	Ricky	Boucher	|		

	 	 	 <time>January	1,	2012</time></p>

7. <section>

8.

9. <p>...</p>

10. </section>

11. </article>

12. <aside>

13. <section	class=”related”>

14. <h2>Related	Headlines</h2>

15.

CR Tip
Visit http://
implementing
responsivedesign.
com/ex/ch2/
ch2-start.html to see
this code in action.

ImplementIng respOnsIve desIgn38

http://implementingresponsivedesign.com/ex/ch2/ch2-start.html
http://implementingresponsivedesign.com/ex/ch2/ch2-start.html
http://implementingresponsivedesign.com/ex/ch2/ch2-start.html
http://implementingresponsivedesign.com/ex/ch2/ch2-start.html
http://implementingresponsivedesign.com/ex/ch2/ch2-start.html

ptg8274462

16.

17. That	Guy	Knocked	Out	the	Other		

	 	 	 	 	 Guy

18.

19. ...

20.

21. </section>

22. <section	class=”ad”>

23.

24. </section>

25. <section	class=”article-tags”>

26. <h2>Tagged</h2>

27. <ul	class=”tags”>

28. Football

29. ...

30.

31. </section>

32. <section	class=”soundbites”>

33. <h2>Sound	Bites</h2>

34. <blockquote>

35. ..this	much	is	clear	to	me.	If	I	were	in	his		

	 	 	 	 	 shoes,	I	would	have	already	won	5	Super	Bowls.

36. <cite>—Guy	with	big	ego</cite>

37. </blockquote>

38. </section>

39. </aside>

40. <div	class=”more-stories”>

41. <h2>More	in	Football</h2>

42. <ul	class=”slats”>

43. <li	class=”group”>

44.

45. <img	src=”images/ball.jpg”		

	 	 	 	 	 	 alt=”Look,	it’s	a	ball!”	/>

46. <h3>Kicker	connects	on	record	13	field		

	 	 	 	 	 	 goals</h3>

47.

48.

49. ...

50.

51. </div>

52. </div><!--	/#container	-->

53. </body>

CC Note
This page uses
several HTML5
elements to provide
more meaning,
including the aside
element styled below.
For more informa-
tion about HTML5,
I highly recommend
HTML5 for Web
Designers, by Jeremy
Keith (A Book Apart,
2010).

Chapter 2 • Fluid layouts 39

ptg8274462

We’re developers of the highest caliber (ahem), so we’ve already given a lot of
thought to the content that will go on this page, and created a solid structure
for it. We know there will be an article. Each article has a headline represented
by an h1 element, a byline, and a quick summary, followed by the body text,
which is wrapped in a section.

Each article page will also include a sidebar with the latest headlines in the
form of an unordered list. Since Yet Another Sports Site doesn’t charge for con-
tent, it’ll have to make money somehow. As a result, each article page needs to
have room for a 300px × 250px ad. This is the first constraint, and we can use
this to help determine the grid.

Finally, the sidebar will also include a list of tags associated with the article and
a few quotes. The tags will be in the form of an unordered list, and the quotes
will be marked up using the blockquote element.

Let’s start by creating the grid the old fashioned way—using pixel measurements.

Instead of just reaching for the nearest 12-column, 960px grid, let’s try a nine-
column grid. Each column will be 84 pixels wide, with a 24px gap in between
for a total width of 948px. A 300px ad will fit very nicely in the last three col-
umns of the grid, leaving us six to use for the article.

First, set the width of the containing element:
#container{

	 width:	948px;

}

Next, float the article and aside elements, setting the width accordingly:
aside	{

	 float:	right;

	 width:	300px;

}

.main	{

	 float:	left;

	 width:	624px;

}

At this point, the layout looks pretty darn lovely. The grid helps the design feel
connected, and the article sports a friendly line length, making it easy to read.

CR Tip
Check out Robbie
Manson’s GitHub
repository at
https://github.com/
robbiemanson/
960px-Grid-
Templates for an
assortment of grid
templates for Photo-
shop or Fireworks.

CR Tip
Visit http://
implementing
responsivedesign.
com/ex/ch2/
ch2.2.html to see
this in action.

ImplementIng respOnsIve desIgn40

https://github.com/robbiemanson/960px-Grid-Templates
https://github.com/robbiemanson/960px-Grid-Templates
https://github.com/robbiemanson/960px-Grid-Templates
https://github.com/robbiemanson/960px-Grid-Templates
http://implementingresponsivedesign.com/ex/ch2/ch2.2.html
http://implementingresponsivedesign.com/ex/ch2/ch2.2.html
http://implementingresponsivedesign.com/ex/ch2/ch2.2.html
http://implementingresponsivedesign.com/ex/ch2/ch2.2.html
http://implementingresponsivedesign.com/ex/ch2/ch2.2.html

ptg8274462

The problems show up very quickly if you bring the browser window size
down: with anything 948px wide or lower, we get the dreaded horizontal
scrollbar and all the content no longer shows on the screen (Figure 2.5).

We’ve designed to a grid, but the design is only appropriate for a small subset of
our audience. Let’s remedy that, shall we?

makIng It FlexIble

If you think back to the flexible font sizing, you can apply that same formula (tar-
get/context = result) to transform the layout into something a bit more flexible.

The context is the container: 948px. Using that measurement, transforming the
layout into a fluid one is easy:

aside	{

	 float:	right;

	 width:	31.6455696%;	/*	300/948	*/

}

.main	{

	 float:	left;

	 width:	65.8227848%;	/*	624/948	*/

}

Figure 2.5 The page
looks nice on a large
screen, but problems
arise as soon as the
browser is resized.

Chapter 2 • Fluid layouts 41

ptg8274462

Box-sizing
If you’ve dug into the default styles that are in place, you’ve probably noticed the fol-
lowing three lines applied to, well, just about everything:

-moz-box-sizing:	border-box;

-webkit-box-sizing:	border-box;

box-sizing:	border-box;

The default box model in CSS is a bit backwards. You define the width and any pad-
ding that you define adds to it. For example, if you create a column 300px wide and
add 20px of padding to the left and right, that column is now 340px wide. This is
particularly painful when trying to create a nice grid-based layout in a fluid site.

By using box-sizing: border-box, you’re telling the browser to apply the padding within
the defined width of the element. With that property applied, a 300px column with
20px of padding on either side will still be 300px wide; the padding is applied to the
interior of the element. This makes things much simpler for planning a fluid layout.

30
0p

x

300px

34
0p

x

340px

Ing respOnsIve desIgn42

ptg8274462

Finally, let’s fix the more stories section so that those too, are fluid.
.main	{

	 float:	left;

	 margin-right:	2.5316456%;	/*	24px	/	948px	*/

	 width:	31.6455696%;	/*	300/948	*/

}

Now that both of the columns are set flexibly, we need to remove the fixed
width that’s currently set on the container. Instead of setting the width to be
948 pixels, let’s set the width to be 95% of the screen, and add a little padding
to provide some breathing room:

#container{

	 width:	95%;

	 padding:	.625em	1.0548523%	1.5em;	/*	10px/16px,	10px/948,		

	 24px/16px	*/

	 margin:	auto	0;

}

This example uses ems for the top and bottom padding, but percentages for the
left and right. That’s because of the context. The top and bottom padding values
are determined by the font-size, so using ems makes sense.

Fixed width objeCts in a Fluid world

The next issue to address is the images. As you adjust the window size up and
down, the fixed-width images stick out like sore thumbs. At larger widths, they
take up only a fraction of the column. On smaller widths, they’re far too wide.
Thankfully, it’s pretty easy to get them to play nicely.

The first thing to do is tell the images to fill the width of the aside, using the
width declaration:

aside	img,

.main	img,

.slats	img	{

	 width:	100%;

}

It’s important to note that the img element in your HTML cannot have the
height and width attributes set. If those values are set, the image will not scale
proportionally. For fluid images to work, you need to control the dimensions
through CSS alone.

CC Note
Why 95%? Honestly,
there’s no scientific
reason. I tried a few
different widths and
95% displayed pretty
comfortably across
different browser
widths. Sometimes
decisions made in de-
sign really are based
on look and feel.

Chapter 2 • Fluid layouts 43

ptg8274462

The next thing is to use the max-width declaration. By setting the max-width to
100%, we’re telling the browser to not let the size of the image exceed the size
of its containing element (in this case, the sidebar). This way, as the screen is
sized narrower, the image won’t spill over or be cut off:

aside	img,

.main	img,

.slats	img	{

	 width:	100%;

	 max-width:	100%;

}

We now have a fluid layout—one that adjusts itself accordingly and is usable
on a pretty large number of devices (Figure 2.6). There’s more we can do with
regard to images to improve the experience, but we’ll save that discussion for
Chapter 4, “Responsive Media.”

Mixing fixed and fluid widths
The article is looking good, and it’s fully flexible. Let’s say we want to tighten up
that right column though. There’s nothing wrong with it now, but it might be
nice if we could make that column remain at 300px and let the primary column
stay fluid. This isn’t a necessity at all, but given the advertising in the side col-
umn, it would be a nice touch.

Using floats, this is next to impossible. As we discussed earlier, the correct
width for the primary column will vary depending on screen resolution. For
example, if we go back to a fixed-width size for the right column and keep the
primary column at its current 63.125% width, we’ll run into issues whenever
the size of the screen is under 960px.

There’s a way around this though, and it involves using CSS tables.

Table layouts—the right way
Not so long ago, in a galaxy not so far away, most sites on the Web were laid
out using tables. It was unsemantic, it was messy, and it made people cry, but it
worked. Then along came the web standards movement with the idea of separa-
tion of content and presentation and stressing the importance of using seman-
tic markup. A great battle ensued, and eventually standards came out on top.

CR Tip
Visit http://
implementing
responsivedesign.
com/ex/ch2/
ch2.3.html to see
this in action.

ImplementIng respOnsIve desIgn44

http://implementingresponsivedesign.com/ex/ch2/ch2.3.html
http://implementingresponsivedesign.com/ex/ch2/ch2.3.html
http://implementingresponsivedesign.com/ex/ch2/ch2.3.html
http://implementingresponsivedesign.com/ex/ch2/ch2.3.html
http://implementingresponsivedesign.com/ex/ch2/ch2.3.html

ptg8274462
Figure 2.6 The newly
fluid layout looks
great even when
the screen size isn’t
exactly as planned.

Chapter 2 • Fluid layouts 45

ptg8274462

The one thing that table layouts did better than CSS layouts was simplifying the
idea of laying a site out in columns. You could mix fixed and fluid widths, rows
and columns could line up—all of this could be done with relative ease. With
CSS, it hasn’t been so straightforward.

However, the display property of CSS actually lets you define a number of dif-
ferent table-related values to give you that same sort of control. In fact, there’s
a display property to make elements layout similar to each of the table-related
HTML elements:

table 2.1 Table-related display values

Value CorrespondinG
eleMent

Value CorrespondinG
eleMent

table TABLE table-column COL

table-row TR table-column-group COLGROUP

table-row-group TBODY table-cell TD, TH

table-header-group THEAD table-caption CAPTION

table-footer-group TFOOT

If the idea of using table values in CSS feels wrong to you, you can’t be blamed.
After all the table-based layout bashing that took place, you might quite under-
standably have a hard time looking at even kitchen tables without gagging a
little. But using table values for CSS layout is a far cry from using HTML tables
for layout. Table values for CSS define the visual presentation of your content,
not the meaning of the content itself.

The table values of the display property haven’t been widely used thus far.
For that you can probably blame Internet Explorer. While Firefox, Safari, and
Opera have all supported table values for a while now, it took until version 8 to
bring support to Internet Explorer. At the time I’m writing this, the combined
market share of Internet Explorer 6 and 7 has dipped below 5 percent, so I
think it’s about time to dust off CSS table layouts and start using them. Mobile
support is also remarkably good.

ImplementIng respOnsIve desIgn46

ptg8274462

If we apply the table-cell value to the display property of the columns, we can
successfully mix fixed- and fluid-width columns:

.main	{

	 display:table-cell;

}

aside	{

	 display:table-cell;

	 width:	300px;	

}

Now, if the browser is resized, the right column remains a fixed 300px, while the
width of the primary column fills the remaining space. We’ve lost the nice spacing
between the two columns, but we can easily bring that back with a little padding:

.main	{

	 display:table-cell;

	 padding-right:	2.5316456%;	/*	24px	/	948px	*/

}

Just like that we’ve combined fixed- and fluid-width columns, maintaining
flexibility without having to deal with the chaos that a hybrid layout can cause
when floats are involved (Figure 2.7). The main column can be a little un-
seemly at high resolutions, but we’ll take care of that in the next chapter when
we explore media queries.

supporting old versions oF internet explorer

For many sites, you may be able to stop here. Versions of Internet Explorer
prior to version 8 are rapidly losing market share. Still, depending on your cli-
ent, letting those versions of Internet Explorer render they way the currently do
may not be enough. The content is all there, but that design might not pass. In
those situations, you might need to serve some alternate styles.

To do that, you can use conditional comments. Conditional comments let
you tell Internet Explorer to use another style sheet for certain versions of the
browser. So let’s say we create a style sheet called ie.css. To load it in Internet
Explorer versions 7 and below, we use a conditional comment like the one below:

<!—[if	lt	IE	8]>

<link	rel=”stylesheet”	href=”/css/ie.css”	media=”all”>

<![endif]-->

Now, any versions of Internet Explorer prior to version 8 will also load ie.css,
allowing us to provide alternate styling for those browsers.

Chapter 2 • Fluid layouts 47

ptg8274462
Figure 2.7 Using
display:table-cell,
the sidebar now
stays a fixed 300px
size while the main
column adjusts to fill
the remaining space.

ImplementIng respOnsIve desIgn48

ptg8274462

Display:table caveat and a word about the future
Before you get too excited and start using display:table on everything in sight, there are a few
potential gotchas to be aware of.

The first is that you can’t absolutely position something contained within an element set to
display:table-cell. If you need absolute positioning, you’ll have to either insert another div
within the table cell or bypass the display:table approach.

The other thing to remember is that tables are a bit more rigid. Sometimes the fluid nature
of floats is desirable. For example, if something is too long, it can easily wrap underneath.

It won’t be the last time you hear me say this: there’s no silver bullet with web design. You
must carefully consider your requirements before committing to any approach, and that
includes display:table.

It’s worth noting two specifications, CSS Grid Layout and Flexbox, that are designed to pro-
vide much greater control over layout. Support is very limited right now, which is why we’re
using display:table.

The only problem is that Windows Phone 7 also currently loads those styles.
Considering that we’ll be altering the styles for smaller screens using media
queries in the next chapter, we don’t want to override those styles with this
IE-specific stylesheet. Thankfully, we can fix this with a simple change to our
conditional comment (first documented by Jeremy Keith6):

<!--[if	(lt	IE	8)	&	(!IEMobile)]>

<link	rel=”stylesheet”	href=”/css/ie.css”	media=”all”>

<![endif]-->

6 Windows mobile media queries at http://adactio.com/journal/4494/

Chapter 2 • Fluid layouts 49

http://adactio.com/journal/4494/

ptg8274462

Now that we can serve up alternate styles without affecting the experience we’ll
create for mobile phones, let’s change the styles back to two fluid, floated columns
in the ie.css file:

.main	{

	 float:	left;

	 width:	65.8227848%;	/*	624/948	*/

}

aside	{

	 float:	right;

	 width:	31.6455696%;	/*	300/948	*/

}

It’s not the exact same layout as browsers with better standards support will
receive, but it’s close enough. Remember, sites don’t have to look the same in
every browser across every device. In fact, it’s just not possible. Users of these
older versions of Internet Explorer will still see a nice layout appropriate for
their browsers.

Wrapping it up
Most of the time, fluid layouts (layouts built with percentages that can there-
fore adjust with the size of the screen) are your best option for laying out your
site. You can create elastic layouts where the width is constrained in relation to
the font size, or fluid layouts where the width is constrained by percentages.

Sizing your fonts in a flexible manner eases maintenance and improves
accessibility. To accomplish this, stick to percentages or ems, though rems
hold potential for the future.

Defining a grid helps to give your site structure and consistency. Instead of
picking an arbitrary, predefined grid, try to build your grid from the content
out. This can mean building a grid based on line length, images, ad sizes, or any
number of other criteria.

Converting fixed units to flexible units is as simple as dividing the target size by
the current context. You can use this formula for both widths and font sizing.

Using CSS tables will let you mix fixed and fluid width columns with ease. Sup-
port is excellent across modern desktop browsers, and you can easily feed an
alternate design to Internet Explorer 7 and below using conditional comments.

CR Tip
 Visit http://
implementing
responsivedesign.
com/ex/ch2/
ch2.4.html to see
this in action.

ImplementIng respOnsIve desIgn50

http://implementingresponsivedesign.com/ex/ch2/ch2.4.html
http://implementingresponsivedesign.com/ex/ch2/ch2.4.html
http://implementingresponsivedesign.com/ex/ch2/ch2.4.html
http://implementingresponsivedesign.com/ex/ch2/ch2.4.html
http://implementingresponsivedesign.com/ex/ch2/ch2.4.html

ptg8274462

The layout for the Yet Another Sports Site article is flexible and we’re already
accommodating more resolutions than we would have been had we laid our
site out with a fixed layout. It isn’t truly responsive yet, however. We still
run into formatting issues if the screen becomes too narrow, and our design
becomes untidy if the screen size is too wide.

In the next chapter, we’ll tackle these issues using media queries, which let us
target styles based on properties of the device in use. This powerful technique
will take us well on our way to becoming truly responsive.

Chapter 2 • Fluid layouts 51

ptg8274462

This page intentionally left blank

ptg8274462Chapter 3

Media
Queries

You must be shapeless, formless, like water.
When you pour water in a cup, it becomes
the cup. When you pour water in a bottle,

it becomes the bottle. When you pour water
in a teapot, it becomes the teapot. —BruCe Lee

ptg8274462

Have you ever had a peanut butter sandwich? Yes, that’s right—a peanut butter
sandwich. No jam. Just peanut butter spread between two pieces of bread.

It’s perfectly edible. It’s certainly better than eating two pieces of bread with
nothing on them at all. Yet, it’s not quite satisfying. You just know there’s some-
thing missing: one ingredient that would make the whole thing much better.

You need the jam, of course.

In responsive design, media queries are the jam. (I’m envisioning strawberry,
but feel free to imagine the flavor you prefer.)

Fluid layouts are a great start. They eliminate the constraints of a fixed-width
layout and enable your site to display nicely on a larger number of screens.
They can only take you so far, however.

Media queries let you define which styles should apply under specific circum-
stances by allowing you to query the values of features such as resolution, color
depth, height, and width. By carefully applying media queries, you can iron out
the remaining wrinkles in your layout.

When you’re finished with this chapter, you’ll be able to:

•	 Set the viewport of your site.

•	 Use media queries to adjust your site design.

•	 Organize and include media queries.

•	 Identify the needed breakpoints.

•	 Improve the navigation experience on small screens.

The last time we saw our article page, it was built with a fluid layout using the
display:table properties. The sidebar was a fixed width, but the primary
column and outer container were set in percentages so the width adjusted with
the screen size.

While you were turning the page, the header and footer magically appeared,
giving the site a bit more form and structure. The article page currently looks
as shown in Figure 3.1.

For some widths, this works out nicely. Upon closer inspection, however, some
issues become apparent.

If we resize the window to be very wide, the line length increases. The wider we
go, the further the line length of the article gets from the ideal. Other than that,
however, the situation isn’t all that bad; the layout holds up pretty well.

CC Note
Visit http://
implementing
responsivedesign.
com/ex/ch3/
ch3.1.html to see the
current version of
the page.

ImpLementIng responsIve DesIgn54

http://implementingresponsivedesign.com/ex/ch3/ch3.1.html
http://implementingresponsivedesign.com/ex/ch3/ch3.1.html
http://implementingresponsivedesign.com/ex/ch3/ch3.1.html
http://implementingresponsivedesign.com/ex/ch3/ch3.1.html
http://implementingresponsivedesign.com/ex/ch3/ch3.1.html

ptg8274462

Figure 3.1 The Yet
Another Sports Site
page sports a stylish
header and footer.

Chapter 3 • Media Queries 55

ptg8274462

But as we resize the window to be narrower, our lovely layout begins to look
like it was hit repeatedly with a big stick. The window doesn’t have to get very
narrow before the first navigation item falls under the rest of the links (Fig-
ure 3.2). This isn’t particularly elegant, but it’s not necessarily a deal-breaker.
The line length of the primary column also gets a bit too short. Remember, ide-
ally we want that line length to fall somewhere between 45 and 70 characters.
Anything under or above those numbers can have a negative impact on the
reading experience.

As the window gets narrower, the issues get worse. By 360px or so, the naviga-
tion is a complete mess. The primary column can barely fit three words per line,
and even the sidebar is cramped for space. Clearly we have some work to do.

Figure 3.2 Making
the browser window
narrower causes the
layout to look a little
worse for wear.

ImpLementIng responsIve DesIgn56

ptg8274462You might think that this narrow window represents what your site visitors will
see on a mobile device, because it seems about that width, but you’d be mis-
taken (Figure 3.3).

If you look at the article page on most smartphones, you won’t see the issues
caused by resizing the browser. Instead, the page maintains its original layout,
but it’s zoomed out so that the text and site appear quite small. To understand
why this happens we need to take a closer look at the little squares on the
screen: the pixels.

Viewports
The concept of a viewport is a simple one in terms of desktop browsers: the
viewport is the visible area of the browser, the browser width. It’s so simple,
in fact, that no one really bothers to even think about it. But that all changes
with phones. Despite having much smaller screens, they attempt to display the

“full” site in order to provide a full web experience. Suddenly things get a little
more complicated.

Figure 3.3 When viewed
on a smartphone, the
site appears zoomed out.

Chapter 3 • Media Queries 57

ptg8274462

A pixel is a pixel, unless it isn’t
When it comes to browsers, there are two kinds of pixels: device pixels and
CSS pixels. Device pixels behave the way you would expect a pixel to behave.
If you have a screen that’s 1024px wide, then you can fit two 512px elements
side-by-side in it.

CSS pixels are a bit less stable. CSS pixels deal not with the screen, but with
the visible area within the browser window. This means that CSS pixels may
not line up exactly with device pixels. While on many devices, one CSS pixel
is the same as one device pixel, on a high-resolution display such as the Retina
display of the iPhone, one CSS pixel is actually equal to two device pixels. Just
wait…it’s about to get even more fun!

Any time a user zooms in or out of a page, the CSS pixels change. For example,
if a user zooms to 300%, then the pixels stretch to three times the height and
three times the width they were set at originally. If the user zooms to 50%, then
the pixels are reduced to half the height and half the width. The entire time,
the device pixel count doesn’t change—the screen is, after all, the same width.
The CSS pixel count, however, does. The number of pixels that can be viewed
within the browser window changes.

This comes into play in considering the viewport. Once again, you have two
different viewports to consider: the visual viewport and the layout viewport.

The layout viewport is similar to device pixels in that its measurements are
always the same, regardless of orientation or zoom level. The visual viewport,
however, varies. This is the part of the page that’s actually shown on the screen
at any given point. Figure 3.4 illustrates this.

On a mobile device, this can complicate things. To allow for a “full web” experi-
ence, many mobile devices return high layout viewport dimensions. For example,
the iPhone has a layout viewport width of 980px, Opera Mobile returns 850px,
and Android WebKit returns 800px. This means that if you create a 320px ele-
ment on the iPhone, it will fill up only about a third of the screen real estate.

ImpLementIng responsIve DesIgn58

ptg8274462

VisuAl VieWporT (deVice WidTh)

lAyouT VieWporT

Viewport tag and properties
Thankfully WebKit gave us an out for this, and many other rendering engines
have since followed suit. The viewport meta tag lets us control the scaling and
layout viewport of many devices.

The format of the viewport tag is simple: just specify it as a viewport meta tag
and list a set of directives:

<meta name=”viewport” content=”directive,directive” />

Meta tags are placed in the head of your HTML:
<head>

 <meta name=”viewport” content=”directive,directive” />

</head>

Let’s take a walk through the viewport properties to see what’s available.

Figure 3.4 Mobile
devices have two
different viewports
which can vary greatly.

CD Rendering engine
The component of
a browser that takes
markup (HTML,
XML, etc) and
styling information
(CSS, XSLT, etc) and
displays it on the
screen as formatted
content.

Chapter 3 • Media Queries 59

ptg8274462
WIDth

The width directive lets you set the viewport to a specific width, or to the width
of the device:

<meta name=”viewport” content=”width=device-width” />

Using device-width is the best solution. This way, your screen’s layout viewport
will equal the screen of the device—in device pixels.

If you use a specific width instead, such as 240px, most devices that don’t have
a width of 240px will scale to match. So, if your device has a screen width of
320px, everything will be scaled up by a factor of 1.33 (320/240) in an attempt
to display the page neatly (Figure 3.5).

For this reason, you’ll almost never use the width directive with an absolute
value. Instead, you’ll pass it device-width.

Figure 3.5
on the left, the
width has been set to
device-width, using
the full 320 pixels
that the iphone
offers. When set to
a specific width that
doesn’t match the
device (right) every-
thing gets scaled.

CC Note
Be sure to include
the quotes and
nested equal
signs. Using <meta
name=”viewport”

width=”device-

width”/> isn’t
valid. You need
content=””.

ImpLementIng responsIve DesIgn60

ptg8274462

heIght

The counterpart to width, height lets you specify a particular height:
<meta name=”viewport” content=”height=468px” />

This sets the viewport height to 468px. Again, as with the width declarative,
a more foolproof method is to set the height equal to device-height:

<meta name=”viewport” content=”height=device-height” />

This sets the layout viewport equal to the height of the screen. In practice, you
probably won’t use height very much. The only time it’s handy is if you don’t
want to let the page scroll vertically, which doesn’t happen that often.

user-sCaLaBLe

The user-scalable directive tells the browser whether or not the user can
zoom in and out on the page:

<meta name=”viewport” content=”user-scalable=no” />

You’ll often find pages that set user-scalable to no, typically to ensure the
“pixel-perfect” display of a design. This is counter to the nature of the Web, and
detrimental to users with accessibility needs. If you don’t set the user-scalable
directive, it will default to yes. As a result, it’s best to stay clear of this one.

The ios orientation bug
one common reason why developers use the user-scalable or maximum-scale properties is a
persistent bug in ios.

if you set the viewport to any value that lets the user scale the page, changing the device’s ori-
entation to landscape will result in the page scaling past 1.0. This forces the user to double-
tap to get the page to zoom correctly and avoid the page being cropped.

if you disable scaling, using either the maximum-scale or the user-scalable feature, the issue
goes away. The unfortunate, and major, downside is that your page becomes less accessible.

Fortunately for us, the issue has finally been resolved in ios6. For older versions of ios, scott
Jehl of the Filament Group put together a fix. his fix uses the device’s accelerometer to deter-
mine when an orientation change occurs. When it does, it disables user zooming temporarily
until the orientation change is complete. once it’s done, zooming is restored.

This clever fix is freely available at https://github.com/scottjehl/ios-orientationchange-Fix
on Github.

Chapter 3 • Media Queries 61

https://github.com/scottjehl/ios-orientationchange-Fix

ptg8274462
InItIaL-sCaLe

Given a number between 0.1 (10%) and 10.0 (1000%), the initial-scale
declarative sets the initial zoom level of the page. Take the following declaration:

<meta name=”viewport” content=”initial-scale=1, width=device-width />

Using the above declaration, if the width of the device is 320px, the page will
display at 320px. If the width is 200px, the page will display at 200px.

Let’s look at one more example:
<meta name=”viewport” content=”initial-scale=.5, width=device-width” />

In the example above, the width attribute is set to the width of the device
and the initial-scale is set to .5 (50%). This means that the browser will
display everything zoomed out. On a 320px-wide device, the page will display
at 640px (Figure 3.6). On a 200px-wide device, it will display at 400px.

maxImum-sCaLe

The maximum-scale declarative tells the browser how far the user can zoom
in on a page. In mobile Safari, the default is 1.6 (160%), but you can pass any
number between 0.1 (10%) and 10.0 (1000%).

As with user-scalable, if you set the maximum-scale declarative to 1.0, you dis-
able the user’s ability to zoom in and thereby limit the accessibility of your site.

Figure 3.6 A 320px-
wide device will
display normally if
the initial-scale is set
to 1 (left). With the
initial-scale set to .5
(right), the page will
appear zoomed out.

ImpLementIng responsIve DesIgn62

ptg8274462

mInImum-sCaLe

The minimum-scale declarative tells the browser how much the user can zoom
out on a page. In mobile Safari, the default is 0.25 (25%). As with maximum-
scale, you can pass any number between 0.1 (10%) and 10.0 (1000%).

If you set the minimum-scale declarative to 1.0 (100%), you disable to the abil-
ity to zoom out. As you’ve already seen, this limits accessibility and should be
avoided.

FIxIng the vIeWport Issue

Armed with the knowledge of the viewport meta tag and its declaratives, you
can get rid of the “zoomed out” look on your page and make mobile devices
use the width of the device as the constraint. To do this, set the width declara-
tive equal to device-width:

<meta name=”viewport” content=”width=device-width” />

css device adaptation
As it turns out, the meta viewport element is actually non-normative. in plain english, it’s not
a definitive standard. in fact, a close look at the W3c documents reveals that the only reason
it’s still included in the specification is to provide a road map for browsers to migrate to the new
@viewport syntax.

The @viewport rule lets you specify any of the descriptors used in the meta viewport element
(width, zoom, orientation, resolution, and so on) directly in the css. For example, to set the
viewport equal to the device width, you would insert the following into the css:

@viewport {

 width: device-width;

}

support is currently limited to prefixed implementations in opera and internet explorer 10.
however, given the stance on the meta viewport element, it is reasonable to expect that at
some point support for the meta viewport element will be removed from browsers as they
migrate to supporting the @viewport rule instead.

Chapter 3 • Media Queries 63

ptg8274462Now when we load the page on a mobile device, it behaves just as it did when
we resized our browser window on the desktop. That’s because the phone is
now using its own width as the visual viewport. We won’t use any of the other
declaratives because they’re not necessary for what we’re doing, and we don’t
want to fall into the trap of trying to control the environment at the risk of
reducing accessibility.

It doesn’t take a keen eye to tell that by setting the viewport, we’ve actually just
made the situation worse (Figure 3.7)! Now, our site looks equally beaten
by the stick on the phone and the desktop. It’s time to call on our friend, the
media query, for help.

Figure 3.7 With the
viewport set, the site
displays just as it did
on the desktop, only
zoomed out.

ImpLementIng responsIve DesIgn64

ptg8274462

Media query structure
Media queries let you question the browser to determine if certain expressions
are true. If they are, you can load a specific block of styles intended for that situ-
ation and tailor the display.

The general form of a media query is:
@media [not|only] type [and] (expr) {

 rules

}

A media query has four basic components:

•	 Media types: specify the type of device to target

•	 Media expressions: test against a feature and evaluate to either true or false

•	 Logical keywords: keywords (such as and, or, not, or only) that let you
create more complex expressions

•	 Rules: basic styles that adjust the display

Let’s take a closer look at each one.

Media types
One of the wonderful features of the Web is its ability to serve content to a
variety of media. The Web extends far beyond the screen. Information can be
printed or accessed via Braille tactile feedback devices, speech synthesizers,
projectors, televisions, and any number of other platforms.

Media types were developed to bring order to this chaos. The most basic
approach is to use a media type on its own, without writing a full media query.
Indeed, if you’ve ever created a print stylesheet, then you’ve already used
media types.

Each media type tells the user agent (such as a browser) whether or not to load
that stylesheet for a given type of media. For example, if you use the screen
media type, the user agent will load your styles as long as you’re using a com-
puter screen of some sort. If you use the print media type, then those styles
will load only when printing or in print preview.

Chapter 3 • Media Queries 65

ptg8274462

CSS defines ten different media types:

Table 3.1 Media types

Type TargeT deVices

all All devices (default)

braille Braille tactile feedback devices

embossed paged braille printers

handheld handheld devices (typically small screen and possibly monochrome)

print printing or print preview

projection projected presentations

screen color computer screen

speech speech synthesizers

tty Media using a fixed-pitch character grid (terminals or teletypes)

tv Television devices

In a stylesheet the query would be:
@media print {

}

or externally, using the media attribute on a link element, it would be:
<link rel=”stylesheet” href=”print.css” media=”print” />

In either case above, the CSS referenced would be applied only when printing
a page, or when viewing a page in print preview.

Every media query must include a media type. If you don’t set one, it should
default to all, but the actual behavior varies from browser to browser.

In practice, you will find yourself using all, screen and print almost exclu-
sively. Unfortunately, a long history of developers using screen instead of say,
handheld or tv, has resulted in most devices deciding to support screen instead
of their specific media type. It’s not really their fault: had they not made that
decision most sites wouldn’t even display on their devices.

By themselves, media types only let you target a wide range of devices. To
make detailed enhancements to the page, you need to narrow the field. That’s
where media expressions come into play.

ImpLementIng responsIve DesIgn66

ptg8274462

Media expressions
The power of media queries is their ability to test against different features of a
device using expressions that evaluate to either true or false. A simple example
would be to determine whether the width of the viewport is greater than 320px:

@media screen and (min-width: 320px) {

}

That media block checks two things. First, it tells you whether the media type is
a screen. Second, it tests the width of the viewport—that’s the expression. Spe-
cifically, the min- prefix ensures that the width is at least 320px. Table 3.2 lists
the different features you can test against, as well as whether or not the feature
can be used with the min- and max- prefixes.

Primarily, you’ll stick to using width, height, orientation, resolution and
perhaps aspect-ratio. Browser support for color, color-index, and device-
aspect-ratio is subpar. Monochrome, scan, and grid don’t really apply to most
devices at the moment.

logical keywords
In addition to media types and media expressions, you can use a number of
optional keywords to make your media queries more powerful.

anD

You can use and to test against more than one expression:
@media screen and (color)

The above example tests to make sure the device has a color screen.

not

The not keyword negates the result of the entire expression, not just a portion
of it. Consider the following:

@media not screen and (color) {...} //equates to not (screen and (color))

For the media query above, the query returns false for any device that has a
color screen. It’s also worth noting that you can’t use the not keyword to negate
a single test—it must precede the rest of the query.

Chapter 3 • Media Queries 67

ptg8274462

Table 3.2 Media features

FeaTure deFiniTion Value Min/Max

width describes the width of the display area of
the device

<length>
(e.g., 320)

yes

height describes the height of the display area of
the device

<length>
(e.g., 600)

yes

device-width describes the width of the rendering surface
of the device

<length>
(e.g., 320)

yes

device-height describes the height of the rendering surface
of the device

<length>
(e.g., 600)

yes

orientation indicates if the device is in portrait (height
greater than width), or landscape (width
greater than height)

portrait|landscape no

aspect-ratio ratio of the value of the width feature to the
value of the height feature

<ratio>
(e.g., 16/9)

yes

device-aspect-ratio ratio of the value of the device-width feature
to the value of the device-height feature

<ratio>
(e.g., 16/9)

yes

color Number of bits per color component of the device
(returns zero if the device is not a color device)

<integer>
(e.g., 1)

yes

color-index Number of entries in the color look-up table for
the device

<integer>
(e.g., 256)

yes

monochrome Number of bits per pixel on a monochrome device
(returns zero if the device is not monochrome)

<integer>
(e.g., 8)

yes

resolution resolution (pixel-density) of the device (resolution
may be expressed in dots per inch [dpi] or dots
per centimeter [dpcm])

<resolution>
(e.g., 118dpcm)

yes

scan scanning process of “tv” devices progressive |
interlace

no

grid returns whether the device is a grid device (1) or
a bitmap device (0)

<integer>
(e.g., 1)

no

ImpLementIng responsIve DesIgn68

ptg8274462

Media queries level 4
There is some work being done to standardize additional features to
query. At the time of writing this there are three features being added:
script, pointer and hover.

The script media feature will query to see if ecMAscript is supported,
and if that support is active (if it hasn’t been disabled). This value of the
script feature will either be 1 (scripting is supported) or 0 (scripting is
not supported).

The pointer media feature will query about the accuracy of the pointing
device (such as a mouse or finger). if there are multiple input methods,
the device should return the results for the primary input mechanism.

The value of the pointer feature will either be none (no pointing device
included), coarse (limited accuracy—like a finger on a touch-based
screen) or fine (such as a mouse or stylus).

Finally, the hover media feature will query whether or not the primary
pointing method can hover. if the device has many pointing methods,
it should report the results for the primary method. A device that is
primarily touch-based would return a value of 0 to signify hovering is not
an option, even if a device like a mouse (which supports hover) could be
connected and used.

None of these things are set in stone, so it’s possible that the specifics
will change. still, it’s interesting to see what is on the horizon.

Chapter 3 • Media Queries 69

ptg8274462

ed Merritt
VerTical Media Queries

Ed Merritt is a designer, front-end developer, amateur baker and real
ale lover who has been using pixels, fonts, and the occasional div to craft
interfaces for the Web since 2001. Ed works with some lovely, talented
people at Headscape.co.uk and is the founder of TenByTwenty.com, a little
studio producing fonts, icons & Wordpress themes. Ed lives by the beach in
Bournemouth, on the south coast of the UK.

The projecT

in mid-2010, while designing a new web-
site for the environmental defense Fund,
i happened to read ethan Marcotte’s
article “responsive Web design.” i loved the
thought of adapting the layout to the viewing
environment. The idea was still very new and
the design was already underway (propos-
ing a fully responsive approach at that point
would have been outside the scope of the
project), but i was keen to include at least
some elements of the approach.

The probleM

The homepage featured a carousel front and
center, with the rest of the page following
below. This worked very effectively, but we
discovered that on a 1024px × 768px screen
(visitors’ second most common resolution,
according to the organization’s stats), with
the most common setup (browser window
fully expanded, with no additional toolbars),
the viewable area ended just after the carou-
sel. in testing we learned that because users
weren’t seeing any content cut off at the
bottom of the viewable area, they were falsely
assuming this was the end of the page and
very few scrolled at all.

These days, concerns about the fold are
behind us for the most part, as users are
happy to scroll, but as our testing showed,
in some cases the layout of the page can
actually misguide users into thinking they’ve
already reached the bottom of the page.
in their browser, there’s a definite point at
which the visible area ends and if the content
appears to end too, why would they scroll
further? The challenge was to show them that
there was more to see.

The soluTion

i’d already settled on creating two fixed
widths for the site: a “full” layout (for view-
ports of 1024px wide and above) and a
“narrow” layout (for widths from 800px to
1024px). This solution wasn’t fully responsive
by any means, but it was a step in the right
direction for my first project making use of
media queries.

ImpLementIng responsIve DesIgn70

ptg8274462

i realized that by using a vertical media query
i could alter the layout for devices with a
vertical resolution below 768px. The narrow
version already reduced the width of the page
to three-quarters of its original width, reduc-
ing the height of the carousel proportionally.
All i had to do was induce the narrow version
for shorter screens too (see illustration).

obviously in windows with short but still
wide viewable areas there was horizontal
space that was now going to waste.
Fortunately, below the carousel the page was
split into a main column of three-quarter
width and a right column of one-quarter
width. resizing the carousel to three-quarter
width created space alongside it for the right
column to move into.

The end resulT

This approach appeased the client and made
users aware that there was more content
on the page to be seen. it also made more
effective use of the available space, a nice
bonus. (i’d rarely want a carousel to fill the
entire viewable area anyway.) And all of this
was accomplished by simply adding a media
query for short but wide viewports.

This was a solution to a specific issue, but
the principle was one that i could apply
elsewhere. in subsequent projects, i’ve always
taken a moment to sit back and ask myself,
are there any circumstances (be it heights or
widths) where the viewport would adversely
affect the presentation of this content? And
if so, is there anything i can do about it?

With the vertical media query in place, more content would appear on shorter screens helping users understand
that there was more to see.

Chapter 3 • Media Queries 71

ptg8274462

or

There is no ‘or’ keyword for media queries, but the comma acts as one.
This lets you load a set of styles if any one of a series of specified expressions
evaluates to true:

@media screen and (color), projection and (color)

In the example above, the query evaluates as true if the device is either a color
screen device, or a color projection device.

onLY

Many older browsers support media types, but not media queries. This some-
times results in the browser attempting to download styles that you don’t want
the user to see. The only keyword can be used to hide media queries from
older browsers, as they won’t recognize it. Browsers that do support the only
keyword process the media query as if the only keyword wasn’t present. This
is generally a very good idea.

@media only screen and (color)

If a device doesn’t support media queries, it ignores the query above entirely.
If it does support them, it evaluates the query the same way it would evaluate
the following:

@media screen and (color)

rules
The last piece in the media query puzzle is the actual style rules you want to
apply. These are basic CSS rules. The only special thing about them is that
they’re included within a media query:

@media only screen and (min-width: 320px) {

 a{

 color: blue;

 }

}

ImpLementIng responsIve DesIgn72

ptg8274462

embedded versus external
Media queries can be embedded in the main stylesheet or placed in the media
attribute of a link element to include an external stylesheet.

You can embed media queries in a stylesheet like this:
a{

 text-decoration:none;

}

@media screen and (min-width: 1300px) {

 a{

 text-decoration: underline;

 }

}

In this case, links are underlined only when the screen is 1300px or wider.

External media queries are placed directly within the link element that loads
each custom stylesheet. So, in the head element of the HTML you would have:

<link href=”style.css” media=”only screen and (min-width: 1300px)” />

The route you choose depends largely on the project at hand; each has its
benefits and pitfalls.

For media queries that are embedded in a single stylesheet, all styles are down-
loaded regardless of whether or not they’re needed, but the benefit is that you
have to make only one HTTP request. This is an important consideration for
performance, particularly if the device is being used on a mobile network.
Mobile networks suffer from high latency, that is, the time it takes for the server
to receive and process a request from the browser. Every time an HTTP request
is made on a mobile network, it could be taking as much as four or five times as
long as it would take on a typical wired Internet connection. The downside, of
course, is that this one CSS file can get to be very large. So while you’ve saved a
few requests, you’ve created a heavy file that can be difficult to maintain.

You might be surprised to learn that external media queries still result in all the
styles being downloaded, even if they’re not applicable. The rationale for this is
that if the browser window size or orientation is changed, those styles are ready
and waiting. Unfortunately, this results in several HTTP requests instead of just
one. (The exception to that rule is devices that do not support media queries at
all. If you preface your media queries with the only keyword, those devices will
ignore these extra styles.)

CR Tip
For a clever work-
around to the issue
of unnecessary CSS
loading, be sure to
check out eCSSential,
created by Scott Jehl
at https://github.
com/scottjehl/
eCSSential.

Chapter 3 • Media Queries 73

https://github.com/scottjehl/eCSSential
https://github.com/scottjehl/eCSSential
https://github.com/scottjehl/eCSSential

ptg8274462

The advantage of external media queries is that the files will be smaller, helping
to make them easier to maintain. You can also serve up a low-weight, simpli-
fied stylesheet to devices that don’t support media queries and again, thanks
to the only keyword, you don’t have to worry about them applying styles they
won’t need.

Of course it depends on the project at hand, but more often than not I recom-
mend one stylesheet with the media queries embedded. Additional HTTP
requests are a surefire way to bring a site to a crawl, and performance is just too
important to dismiss so casually.

Media query order
The next thing to consider when structuring your CSS is how to build a respon-
sive site: from the desktop down or from mobile up.

desktop down
Responsive design, as it was first taught and is still most commonly imple-
mented, is built from the desktop down. The default layout is what you typi-
cally see on the screen of a browser on a laptop or desktop computer. Then,
using a series of media queries (typically max-width), the layout is simplified
and adjusted for smaller screens. A stylesheet structured in this way might look
like the following:

/* base styles */

@media all and (max-width: 768px) {

 ...

}

@media all and (max-width: 320px) {

...

}

Unfortunately, building from the desktop down results in some serious issues.
Media query support on mobile devices, while improving, is still somewhat
sketchy. BlackBerry (pre-version 6.0), Windows Phone 7, and NetFront (which
powers pre-third generation Kindle devices) all lack media query support.

CC Note
In the sample code,
... represents the
style rules. Refer to
the introduction for
more information
about the coding
conventions in the
book.

ImpLementIng responsIve DesIgn74

ptg8274462

While it’s fun to imagine that every user has the latest and greatest technology
running on the latest and greatest device, that is not the case. At the time of
writing this, Android 4 is the latest version of that operating system, but just
under 92 percent of the Android devices in use are running 2.3.x or earlier.1

Older BlackBerry devices are incredibly common as well. Currently, 66 percent
of BlackBerry users are running a version of the operating system that lacks
media query support.2

The reality is that not everyone wants to keep up with rapidly evolving technol-
ogy, and others may not be able to afford to.

Mobile up
If you flip things around and build the mobile experience first, and then use
media queries to adjust the layout as the screen size gets larger, you can largely
circumvent the support issue. Building the mobile experience first will ensure
that mobile devices that do not support media queries will still be served an ap-
propriate layout. The only desktop browser that you’ll need to contend with is
Internet Explorer. Prior to version 9, Internet Explorer does not support media
queries, but as you’ll see later in this chapter, it’s pretty easy to account for that.

A stylesheet built from mobile up might have a structure like this:
/* base styles, for the small-screen experience, go here */

@media all and (min-width: 320px) {

...

}

@media all and (min-width: 768px) {

...

}

Support is not the only advantage of building mobile up. Creating the mobile
experience first can help reduce the complexity of your CSS as well. Consider
the aside from the Yet Another Sports Site article page. On the large screen, it’s
set to display:table-cell and given a width of 300px. On a small screen, it
probably makes more sense to have the aside displayed linearly, that is, stacked
underneath the article itself. If the page were built from the desktop down, the
styles would look like this:

1 Platform Versions at http://developer.android.com/resources/dashboard/platform-versions.html
2 See “Choosing a Target Device OS” at http://us.blackberry.com/developers/choosingtargetos.jsp.

Chapter 3 • Media Queries 75

http://developer.android.com/resources/dashboard/platform-versions.html
http://us.blackberry.com/developers/choosingtargetos.jsp

ptg8274462

aside{

 display:table-cell;

 width: 300px;

}

@media all and (max-width: 320px) {

 aside{

 display:block;

 width: 100%;

 }

}

Building from mobile up, the styles would look like this:
@media all and (min-width: 320px) {

 aside{

 display:table-cell;

 width: 300px;

 }

}

Using the simpler layout first lets the browser defaults serve as a base to build
on. As a result, the CSS required is simpler and cleaner.

create your core experience
Ideally, every project would begin with a core experience that’s simple, stream-
lined, and usable by as wide a range of devices as possible. The breadth of
reach is one of the greatest strengths of the Internet—try to maximize it when-
ever possible.

Keeping this in mind, we’ll start our core experience with a simple, one-
column layout. We can move any layout-related CSS to the bottom of the
stylesheet and leave it commented out for now.

After combing through the stylesheet for any floats that have to do with the lay-
out, or any display:table properties, the collection of commented out styles
at the bottom of the CSS looks like this:

CC Note
It’s not exactly layout,
but the line that sets
the width of the ad
to 100% is removed
as well. Depending
on the deal you have
with advertisers,
resizing it may not
be an option. We’ll
talk more about this
topic in Chapter 4,

“Responsive Media.”

ImpLementIng responsIve DesIgn76

ptg8274462

1.	 /*

2.	 .main {

3.	 	 display: table-cell;

4.	 	 padding-right: 2.5316456%;

5.	 }

6.	 aside {

7.	 	 display: table-cell;

8.	 	 width: 300px;

9.	 }

10.	 .slats li {

11.	 	 float: left;

12.	 	 margin-right: 2.5316456%;

13.	 	 width: 31.6455696%;

14.	 }

15.	 .slats li:last-child {

16.	 	 margin-right: 0;

17.	 }

18.	 nav[role=”navigation”] li {

19.	 	 float: left;

20.	 }

21.	 nav[role=”navigation”] a {

22.	 	 float: left;

23.	 }

24.	 footer[role=”contentinfo”] .top {

25.	 	 float: right;

26.	 }

37.	 */

With all this code commented out, the page looks like Figure 3.8.

There’s not much going on here in terms of complexity, which is great. It means
the core will be accessible by a wide range of devices. The navigation items
could use a little separation though—a border might help there (Figure 3.9):

nav[role=”navigation”] li {

 padding: .625em 2em .625em 0;

	 border-top:	1px	solid	#333;	

}

With the layout out of the way and this minor adjustment in place, the core
experience is ready to go. It’s time to start adding in media queries to improve
the layout as it scales up.

Chapter 3 • Media Queries 77

ptg8274462

Figure 3.8 With the styles commented out, the page now
has a simple, accessible one-column layout.

Figure 3.9 With a 1px border added to the navigational
items, things are starting to look pretty sharp.

determining breakpoints
The conventional method of determining breakpoints is to use some fairly stan-
dard widths: 320px (where the iPhone and several other mobile devices land
on the spectrum), 768px (iPad), and 1024px. There’s a problem with relying on
these “default” breakpoints, however.

When you start to define breakpoints entirely by the resolutions of common
devices, you run the risk of developing specifically for those widths and ignor-
ing the in-between (case in point, rotate the iPhone to landscape and you’ve
just introduced a 480px width). It’s also not a particularly future-friendly ap-
proach. What’s popular today may not be popular tomorrow. When the next
hot device emerges, you’ll be forced to add another breakpoint just to keep up.
It’s a losing battle.

ImpLementIng responsIve DesIgn78

ptg8274462

Follow the content
A better approach is to let the content dictate where your breakpoints occur,
and how many of them you need. Start resizing your browser window and see
where there’s room for improvement.

By allowing the content to guide you, you’re further decoupling your layout
from a specific resolution. You’re letting the flow of the page dictate when the
layout needs adjusting—a wise and future-friendly move.

To identify your breakpoints, you can reduce the window of your browser to
around 300px (assuming your browser lets you go that far) and then slowly bring
up the size of the window until things start to look like they need a touch up.

By around 600px, the images in the “More in Football” section start to get a little
obnoxious. Introducing a media query here to float those stories to the side, as
they were in Chapter 2, “Fluid Layouts,” probably makes sense (Figure 3.10):

Figure 3.10
The images start to
dominate the screen
around 600px (left),
so it makes sense
to add a breakpoint
here and adjust the
design (right).

CC Note
The mediaQuery
bookmarklet
(http://seesparkbox.
com/foundry/
media_query_
bookmarklet) is a
handy tool for seeing
just what size your
screen is as you resize,
as well as what media
queries are currently
applied.

Chapter 3 • Media Queries 79

http://seesparkbox.com/foundry/media_query_bookmarklet
http://seesparkbox.com/foundry/media_query_bookmarklet
http://seesparkbox.com/foundry/media_query_bookmarklet
http://seesparkbox.com/foundry/media_query_bookmarklet

ptg8274462

1.	 @media all and (min-width: 600px) {

2.	 	 .slats li {

3.	 	 	 float: left;

4.	 	 	 margin-right: 2.5316456%; /* 24px / 948px */

5.	 	 	 width: 31.6455696%; /* 300 / 948 */

6.	 	 }

7.	 	 .slats li:last-child {

8.	 	 	 margin-right: 0;

9.	 	 }

10.	 }

Around 860px, all the aside content starts to feel spaced out. The window is
still too narrow to put the aside off to the right, so instead, float the aside sec-
tions so they line up in rows of two (Figure 3.11) :
1.	 @media all and (min-width: 860px) {

2.	 	 aside{

3.	 	 	 display: block;

4.	 	 	 margin-bottom: 1em;

5.	 	 	 padding: 0 1%;

6.	 	 	 width: auto;

7.	 	 }

8.	 	 aside section{

9.	 	 	 float: left;

10.	 	 	 margin-right: 2%;

Figure 3.11 Adding a breakpoint to let the sections in
the aside float next to each other makes the layout look
much tighter.

CC Note
In case you’re follow-
ing along you should
still be working in
the file located at
http://implementing
responsivedesign.
com/ex/ch3/
ch3.1.html.

CC Note
Why 860px? There’s
no hard rule. If you
think the layout can
be improved by
adding a breakpoint
earlier, go ahead and
do it. Just remember
that each breakpoint
adds a little complex-
ity, so try to find a
nice balance.

ImpLementIng responsIve DesIgn80

http://implementingresponsivedesign.com/ex/ch3/ch3.1.html
http://implementingresponsivedesign.com/ex/ch3/ch3.1.html
http://implementingresponsivedesign.com/ex/ch3/ch3.1.html
http://implementingresponsivedesign.com/ex/ch3/ch3.1.html

ptg8274462

11.	 	 	 width: 48%;

12.	 	 }

13.	 	 .article-tags{

14.	 	 	 clear: both;

15.	 	 }

16.	 	 .ad{

17.	 	 	 text-align: center;

18.	 	 	 padding-top: 2.5em;

19.	 	 }

16.	 }

At this breakpoint, it looks like the navigation items could be floated once again,
instead of being stacked on top of each other (Figure 3.12). These styles are in
the commented out CSS, so we’ll grab them and place them in the media query.
We’ll also remove the border on the navigation items:
1.	 @media all and (min-width: 860px) {

2.	 	 ...

3.	 	 nav[role=”navigation”] li {

4.	 	 	 float: left;

5.	 	 	 border-top: 0;

6.	 	 }

7.	 	 nav[role=”navigation”] a {

8.	 	 	 float: left;

9.	 	 }

10.	 	 footer[role=”contentinfo”] .top {

11.	 	 	 float: right;

12.	 	 }

13.	 }

Figure 3.12 There’s
enough room to
float the naviga-
tion now, bring the
content further up
the page.

Chapter 3 • Media Queries 81

ptg8274462

Finally, it looks like the aside can be brought back up and to the right around
940px. The sections in the aside will also need to be told to not float, and to
take up the full width once again:
1.	 @media all and (min-width: 940px) {

2.	 	 .main {

3.	 	 	 display: table-cell;

4.	 	 	 padding-right: 2.5316456%; /* 24px / 948px */

5.	 	 }

6.	 	 aside {

7.	 	 	 display: table-cell;

8.	 	 	 width: 300px;

9.	 	 }

10.	 	 aside img {

11.	 	 	 max-width: 100%;

12.	 	 }

13.	 	 aside section {

14.	 	 	 float: none;

15.	 	 	 width: 100%;

16.	 	 }

17.	 }

At this point, the layout at 940px or wider looks a lot like it did at the end of
Chapter 2, “Fluid Layouts” (Figure 3.13).

Figure 3.13 With
one more breakpoint,
the layout on a
screen at least 940px
wide looks a lot like
like it did before we
started.

ImpLementIng responsIve DesIgn82

ptg8274462

enhancing for larger screens
Making the browser window even wider reveals that it’s not long before the
line length for the article starts to be hard to read. Many sites implement a
max-width here to limit just how far the browser window can be resized, or
bump the font size to improve the line length.

Instead of capping the width of the page just yet, let’s make use of CSS3 multi-
column layouts.

The multi-column layout module lets you tell the browser to display the con-
tent in several columns as needed (Figure 3.14). Support isn’t too bad: Opera,
Firefox, and WebKit all support it. Just be sure to use the correct prefixes in the
case of Firefox, Internet Explorer 10, and WebKit. No prefix is necessary for
Opera or Internet Explorer. Since this is a nice feature to have, but not essential
to the site, we can progressively enhance the experience for these browsers:
1.	 @media all and (min-width: 1300px) {

2.	 	 .main section {

3.	 	 	 -moz-column-count: 2; /* Firefox */

4.	 	 	 -webkit-column-count: 2; /* Safari, Chrome */

5.	 	 	 column-count: 2;

6.	 	 	 -moz-column-gap: 1.5em; /* Firefox */

7.	 	 	 -webkit-column-gap: 1.5em; /* Safari, Chrome */

8.	 	 	 column-gap: 1.5em;

9.	 	 	 -moz-column-rule: 1px dotted #ccc; /* Firefox */

10.	 	 	 -webkit-column-rule: 1px dotted #ccc; /* Safari, Chrome */

Figure 3.14
For wider screens,
splitting the article in
two columns helps
to maintain a reader-
friendly line length.

Chapter 3 • Media Queries 83

ptg8274462

11.	 	 	 column-rule: 1px dotted #ccc;

12.	 	 }

13.	 }

Lines 3–5 tell the browser how many columns it should use to display the
article. Lines 6–7 tell the browser to insert a 1.5em gap (24px) between the
columns. Finally, lines 9–11 tell the browser to include a 1px, light gray dotted
line in that gap to provide a little more visual separation (Figure 3.15).

The line length is now much better, but the page could still benefit from some
separation between the article and the author information. The picture could
use a little more distance from the content as well:
1.	 @media all and (min-width: 1300px) {

2.	 	 .main	section	img{

3.	 	 	 margin-bottom:	1em;

4.	 	 	 border:	3px	solid	#dbdbdb;

5.	 	 }

6.	 	 .main	.articleInfo{

7.	 	 	 border-bottom:	2px	solid	#dbdbdb;

8.	 	 }

9.	 	 ...

10.	 }

With the border in place around the image and above the section, and the addi-
tion of the extra padding, the design is once again looking pretty sharp.

Figure 3.15
The addition of some
spacing and a border
help to separate the
image from the text
that follows.

ImpLementIng responsIve DesIgn84

ptg8274462

using ems for more flexible media queries
People browse the Web with their browsers set to different zoom factors. Some-
one who has difficulty seeing may find that the majority of sites have a font size
that is difficult to read, so he may set his preferences to zoom in by default.

When people use different zoom factors, the font size increases (or decreases).
In Firefox and Opera, this isn’t an issue; pixel-based media queries are recalcu-
lated and applied according to the zoom factor. On other browsers, however,
our perfectly placed pixel breakpoints fail us. Suddenly things start to float in
awkward ways and our ideal line length is mercilessly thrown out the window
(Figure 3.16). This same issue arises when, as we discussed in Chapter 2,

“Fluid Layouts,” a device uses a different default font size. For example, the
Kindle’s 26px sized fonts will wreck havoc on pixel-based media queries. We
can combat these issues and make our site even more flexible by converting the
breakpoints to ems.

As we also discussed in Chapter 2, converting pixel-based measurements to
ems is as simple as dividing the target (the breakpoint) by the context (in this
case, 16px, the body font size):

Figure 3.16 With
pixel-based break-
points if the visitor
is browsing zoomed
in, our carefully
crafted layout goes
to shambles.

Chapter 3 • Media Queries 85

ptg8274462

1.	 /* 600px/16px = 37.5em */

2.	 @media all and (min-width: 37.5em) {

3.	 ...

4.	 }

5.	 /* 860px/16px = 53.75em */

6.	 @media all and (min-width: 53.75em) {

7.	 ...

8.	 }

9.	 /* 940px/16px = 58.75em */

10.	 @media all and (min-width: 58.75em) {

11.	 ...

12.	 }

13.	 /* 1300px/16px = 81.25em */

14.	 @media all and (min-width: 81.25em) {

15.	 ...

16.	 }

With the media queries now set using ems, even if the site is zoomed in a few
levels, the media queries will kick in, ensuring that the layout remains opti-
mized (Figure 3.17).

Using media queries based on em units is another way of embracing the flex-
ibility and unpredictability of the Web. It puts the user in control of the experi-
ence, and allows the content to dictate the layout.

CC Note
If you zoomed in after
loading the page, you
may need to hit re-
fresh to see it update.
Most people using
this feature have their
zoom level set ahead
of time, so this isn’t
typically an issue.

Figure 3.17 By set-
ting breakpoints in
em units, you ensure
that the visitor will
get an appropriate
layout no matter
their zoom factor.

ImpLementIng responsIve DesIgn86

ptg8274462

navigation
There’s one last issue to be addressed before we wrap up our introduction to
media queries: site navigation. All the excellent content in the world won’t
keep a visitor on your site if he can’t figure out how to move around. Your navi-
gation needs to be accessible and easy to use, no matter the screen size.

The navigation in our example is not mobile friendly at the moment. Stacking
the navigational items on top of one another does make everything look tidy,
but the article—the reason the visitor came to the page in the first place—gets
buried (Figure 3.18).

What we want is navigation that adheres to the following criteria:

•	 It shouldn’t take up precious screen real estate.

•	 It should be intuitive so the user doesn’t feel disoriented or confused.

•	 It should be usable by a wide variety of devices (though the experience
may vary depending on the capabilities of a given device).

Figure 3.18 When you
view the page on a phone,
the content is buried
beneath a long list of
navigational items.

Chapter 3 • Media Queries 87

ptg8274462

Let’s run through a few quick options.

•	 Don’t do anything.	That’s what the page essentially does right now. It’s
intuitive and the solution works on a variety of devices, but it consumes
a lot of screen real estate.

•	 Convert to select menu. We could convert the navigation to a select
menu. This would conserve screen space, be usable by most devices, and
fall back nicely on those devices that can’t handle the necessary JavaScript.
However, select menus are familiar to users as being part of a form. They
might be a little thrown off to see it used for navigation. We can’t style it
either, as most browsers don’t allow for that.

•	 Toggle the menu.	On small screens, we could use JavaScript to hide the
navigation initially and offer the user a button to click to make the naviga-
tion display. This method passes all three tests: it conserves screen real
estate, the solution is intuitive to the user, and it can be implemented on
a wide variety of devices and falls back nicely on devices where JavaScript
is not supported.

Since the toggle menu passes all three tests, let’s use that approach for the Yet
Another Sports Site.

Toggling
You can implement a simple toggle with just a few lines of CSS and JavaScript.

First, add a link to your HTML that can be used to toggle the navigation. You
can place the link right above the navigation list.

Menu

<ul class=”nav” id=”nav”>

toggLe Css

Now, in the CSS, create a few rules to style the collapse button, and hide it initially.
1.	 #nav-collapse{

2.	 	 display: none;

3.	 	 color: #fff;

4.	 	 text-align: right;

5.	 	 width: 100%;

6.	 	 padding: .625em 0 .625em 0;

7.	 }

CC Note
Read Brad Frost’s
post at http://
bradfrostweb.com/
blog/web/responsive-
nav-patterns/ for
a detailed list of
responsive naviga-
tion approaches, as
well as the benefits
and disadvantages
of each.

CC Note
To improve the
solution, generate
the collapse button
dynamically using
JavaScript. There’s no
reason for it to exist
when the JavaScript
isn’t being applied.

ImpLementIng responsIve DesIgn88

http://bradfrostweb.com/blog/web/responsive-nav-patterns/
http://bradfrostweb.com/blog/web/responsive-nav-patterns/
http://bradfrostweb.com/blog/web/responsive-nav-patterns/
http://bradfrostweb.com/blog/web/responsive-nav-patterns/

ptg8274462

8.	 #nav-collapse.active {

9.	 	 display: block;

10.	 }

Lines 1–7 set a few basic styles on the collapse button, and hide it initially.
Remember, if the browser doesn’t support JavaScript, the navigation appears
right away and the button is no longer necessary.

Lines 8–10 display the button if a class of “active” is applied. The JavaScript
applies this class.

Using these styles, nothing changes in the browser without any JavaScript
applied. This is what we want. If a browser doesn’t support the necessary
JavaScript, the navigation will be completely useful. Ideal, no. Useful, yes.

toggLe JavasCrIpt

The JavaScript, too, is simple. Create a file called yass.js and include the script in
your HTML, just before the closing body tag.

<script type=”text/javascript” src=”yass.js”></script>

Now, drop the following Javascript into yass.js.
1.	 window.onload = function() {

2.	 	 var collapse = document.getElementById(‘nav-collapse’);

3.	 	 var nav = document.getElementById(‘nav’);

4.	 	 //toggle class utility function

5.	 	 function classToggle(element, tclass) {

6.	 	 	 var classes = element.className,

7.	 	 	 				pattern = new RegExp(tclass);

8.	 	 	 var hasClass = pattern.test(classes);

9.	 	 	 //toggle the class

10.	 	 	 classes = hasClass ? classes.replace(pattern, ‘’) :

 classes + ‘ ‘ + tclass;

11.	 	 	 element.className = classes.trim();

12.	 	 };

13.	 	 classToggle(nav, ‘hide’);

14.	 	 classToggle(collapse, ‘active’);

15.	 	 collapse.onclick = function() {

16.	 	 	 classToggle(nav, ‘hide’);

17.	 	 	 return false;

18.	 	 }

19.	 }

Chapter 3 • Media Queries 89

ptg8274462

When the page loads (line 1), it runs the JavaScript above. Lines 2–3 grab the
navigation element and the collapse button so the script can refer to them later.

Lines 5–12 create a simple toggleClass function. This function takes an ele-
ment, and checks to see if a specified class is applied. If it is, it removes it. If not,
it applies it.

Lines 13–14 apply the hide class to the navigation and the active class to
the button.

Finally, lines 15–18 define a function that is called anytime the collapse button
is clicked. When called, the function toggles the hide class currently applied
to the navigation. The result is that the button now controls the display of
the navigation.

Right now, this code is run no matter what. Obviously, we don’t want this. In-
stead, the code should run only when the navigation is displayed as a stacked list.
It would be easy enough to check the width of the screen, but that would mean
the breakpoint would be hard-coded in two locations: the CSS and the JavaScript.

If the script instead checks to see if the navigation is being floated and runs
based on that, the breakpoint is kept in one place, making it easier to change later.
While we’re making that change, we can also pull the classToggle function out
and put it into a utility object that we can build on later.
1.	 var Utils = {

2.	 	 classToggle : function(element, tclass) {

3.	 	 	 ...

4,	 	 }

5.	 }

6.	 window.onload = function() {

7.	 	 var nav = document.getElementById(‘nav’);

8.	 	 var	navItem	=	nav.getElementsByTagName(‘li’);

9.

10.	 	 //is	it	floated?

11.	 	 var	floated	=	navItem[0].currentStyle	?	el.currentStyle[‘float’]	:		

	 document.defaultView.getComputedStyle(navItem[0],null).	

	 getPropertyValue(‘float’);

12.

13.	 	 if	(floated	!=	‘left’)	{

14.	 	 	 var collapse = document.getElementById(‘nav-collapse’);

ImpLementIng responsIve DesIgn90

ptg8274462

15.

16.	 	 	 Utils.classToggle(nav, ‘hide’);

17.	 	 	 Utils.classToggle(collapse, ‘active’);

18.

19.	 	 	 collapse.onclick = function() {

20.	 	 	 	 Utils.classToggle(nav, ‘hide’);

21.	 	 	 	 return false;

22.	 	 	 }

23.	 	 }

24.	 }

Let’s break this down a bit.

Lines 8–11 grab a navigation item and check to see if it’s floated. Line 11 might
look a little intimidating, but all it’s really doing is checking to see which way it
should request the current style information. Internet Explorer doesn’t play along
very well, so if that’s the browser being used, it checks a different property.

Armed with the value of the float property, the rest of the JavaScript can now
be run only if the navigation items are floated. If we apply this and refresh the
browser on a large screen, nothing happens. On a small-screen display, however,
the collapse button appears on page load, allowing the navigation display to be
toggled (Figure 3.19).

CC Note
It’s beyond the scope
of this book, but if
you want to boost
your JavaScript skills,
pick up a copy of
Professional JavaScript
for Web Developers, by
Nicholas C. Zakas
(Wrox, 2009).

Figure 3.19 With the
toggling functionality
in place, the navigation
stays out of the way
until the visitor needs it.

Chapter 3 • Media Queries 91

ptg8274462

supporting internet explorer
We’re not in the clear quite yet. Everyone’s favorite desktop browser, Internet
Explorer, is giving us some headaches.

Only Internet Explorer versions 9 and later support media queries. This means
that, if you’ve built mobile first, users with earlier versions will be presented
with a layout intended for small screens.

This can quickly be fixed by using conditional comments to load the appropri-
ate styles for Internet Explorer. Since we already have an ie.css stylesheet in
place from Chapter 2, “Fluid Layouts,” this should be pretty simple.

First, we’ll change the conditional comment to apply to all versions of Inter-
net Explorer prior to version 9. This means that version 9, which supports
display:table, will use floats instead, but that minor trade off is worth it to
avoid the added complexity of another Internet Explorer–specific stylesheet:

<!--[if	(lt	IE	9)	&	(!IEMobile)]>

<link rel=”stylesheet” href=””/css/ie.css” media=”all”>

<![endif]-->

Now, we’ll add the styles that were included only in the media queries and drop
them into the Internet Explorer stylesheet:
1.	 .main {

2.	 	 float: left;

3.	 	 width: 65.8227848%; /* 624 / 948 */

4.	 }

5.	 .slats li {

6.	 	 float: left;

7.	 	 margin-right: 2.5316456%; /* 24px / 948px */

8.	 	 width: 31.6455696%; /* 300 / 948 */

9.	 }

10.	 .slats li:last-child {

11.	 	 margin-right: 0;

12.	 }

13.	 aside{

14.	 	 display: block;

15.	 	 margin-bottom: 1em;

16.	 	 padding: 0 1%;

ImpLementIng responsIve DesIgn92

ptg8274462

17.	 	 float: right;

18.	 	 width: 31.6455696%; /* 300 / 948 */

19.	 }

20.	 nav[role=”navigation”] li {

21.	 	 float: left;

22.	 	 border-top: 0;

23.	 }

24.	 nav[role=”navigation”] a {

25.	 	 float: left;

26.	 }

27.	 footer[role=”contentinfo”] .top {

28.	 	 float: right;

29.	 }

30.	 aside img {

31.	 	 max-width: 100%;

32.	 }

Internet Explorer should now be good to go. It’s not responsive, but at least it
serves up a fluid layout that displays pretty well at most screen sizes.

Wrapping it up
Fluid layouts are a start, but they can only take us so far. At some point, we
need to adjust the layout, sometimes dramatically, to better accommodate dif-
ferent devices.

Smartphones try to let us experience the full Web. If the meta viewport ele-
ment isn’t being used, most smartphones display a zoomed version of the site.

Media queries let us test for features like width and height and adjust the CSS
we apply to our design accordingly. They can be used both externally and inter-
nally. Each method has benefits and limitations, so it’s important to choose the
approach that best meets the project requirements.

While it’s common to pick specific device widths for breakpoints, a better
approach is to let the content dictate where you need to include a media query.

Responsive sites can be made even more flexible and accessible using ems,
instead of pixels, for media queries.

Chapter 3 • Media Queries 93

ptg8274462

Be sure to test on real devices. Doing so will alert you to things like navigation
that may require adjustment for different displays.

In the next chapter, we’ll look at the different approaches you can take to serve
images that are sized appropriately, greatly improving the performance of your
site in the process.

ImpLementIng responsIve DesIgn94

ptg8274462Chapter 4

Responsive
Media

Look! We’ve figured it seventeen different ways,
and every time we figured it, it was no good,

because no matter how we figured it, somebody
don’t like the way we figured it.
—Buddy haCkett as Benjy Benjamin in

it’s a mad mad mad mad WorLd

ptg8274462

When it comes to rich experiences online, we have a love/hate relationship.
On one hand, beautiful images and interesting videos help to provide a deeper,
more pleasant experience. On the other hand, including many images and
videos on a page results in a slow loading time, which can be very frustrating.
It takes careful consideration and planning to give our users the best of both
worlds: a beautiful experience that loads as quickly as possible.

Using the methods outlined in the first three chapters, we’ve built ourselves
a responsive site. It looks good on desktops, on tablet devices, and on smart-
phones. Users can resize the browser window to their hearts’ content, and the
layout will adjust accordingly. If delivering a responsive approach were this easy,
this book would be short indeed. There’s still plenty of room to tidy things up.
The images, in particular, are an issue.

In this chapter, we’ll discuss:

•	 Why performance matters

•	 How to conditionally load images

•	 What responsive image solutions are available, and their limitations

•	 How to swap out background images without downloading multiple
images

•	 How to conditionally load web fonts

•	 What’s ahead for responsive images

•	 How to make embedded video scale while maintaining its aspect ratio

•	 What to do with responsive advertising

What’s the problem?
Once we hit the final breakpoint (1300px), the images associated with the

“More in Football” section look a little worse for wear. Other than that, the im-
ages appear sharp and crisp.

We could probably improve the lead-in photograph for small screens. If the
small version of the image were more tightly cropped, the image would main-
tain its initial impact, even when scaled down on the small screen. As it is, the
flag and foot start to get lost at such a small size (Figure 4.1).

impLementing responsive design96

ptg8274462The main problem though is not in how the images look, but in how much they
weigh, how much demand they place on performance. Currently, the same im-
ages are being loaded regardless of the device in use. That means, for example,
the 624px lead-in image is being downloaded even on small screens where a
350px image is all that’s needed. The page performance is suffering, and that’s
a big deal to people visiting the site.

Performance
Unfortunately, performance is treated as an afterthought on many projects.
A quick look at the data reveals that it should be anything but.

Most of us working with the Web have faster connections than the average Inter-
net user. As a result, we experience the Web differently. Our users, however, are
keenly aware of how painful it is to use a poorly performing site.

In 2009, the major shopping comparison site Shopzilla improved its page load
time from 4 to 6 seconds to 1.5 seconds. The results were stunning. The site’s
conversion rate increased by 7 to 12 percent and page views jumped a whop-
ping 25 percent.1

1 “Shopzilla Site Redesign–We get what we measure” at www.scribd.com/doc/16877317/
Shopzillas-Site-Redo-You-Get-What-You-Measure

Figure 4.1 On small-screens,
the flag and foot in the
main image start to lose
their impact.

Chapter 4 • responsive Media 97

www.scribd.com/doc/16877317/Shopzillas-Site-Redo-You-Get-What-You-Measure
www.scribd.com/doc/16877317/Shopzillas-Site-Redo-You-Get-What-You-Measure

ptg8274462

Mozilla found similar results when it trimmed page load time by 2.2 seconds:
download conversions went up by 15.4 percent, which translated into an esti-
mated 10.28 million additional downloads of Firefox per year!2

The situation is much more dire for mobile phones. Networks are slower, hard-
ware is less capable, and you have to deal with the messy world of data limita-
tions and transcoding methods. In spite of all this, user expectations remain the
same. In fact, 71 percent of mobile users expect sites to load on their phones as
quickly as or faster than on their home computers.3

This is bad news for our site as it currently stands. Both the logo and article
lead-in photo are very large. The article lead-in photo is 624px wide and weighs
around 50KB. The small-screen layout could get away with using a much
smaller image (somewhere around 300px), but we’re still passing along the
large desktop image instead of something more appropriate. Removing the
amount of data sent down the pipe is an important consideration, and one we
can’t afford to ignore.

A quick assessment of the page reveals the following images that could be
optimized:

•	 The images for the “More in Football” section. Each of these is only
300px, but they’re really not needed on the small screen. In fact, they take
up a lot of screen real estate and look out of proportion with the content
(Figure 4.2). On the small screen, users have a better experience if only
the headlines are displayed—not the images.

•	 The article lead-in image. The lead-in image is a whopping 624px and
weighs in at just under 50KB. On small screens, an image half the size
would work just as well. In addition, if the small-screen version of the image
was more tightly cropped, the visual focus on the flag would be stronger.

•	 The logo. The logo weighs in at 10KB, so it’s much lighter than the lead-in
article. It is, again, about twice as big as it needs to be.

2 “Firefox & Page Load Speed–Part II” at http://blog.mozilla.org/metrics/2010/04/05/
firefox-page-load-speed-–-part-ii/

3 “What Users Want from Mobile” at www.gomez.com/resources/whitepapers/
survey-report-what-users-want-from-mobile/

impLementing responsive design98

http://blog.mozilla.org/metrics/2010/04/05/firefox-page-load-speed-%E2%80%93-part-ii/
http://blog.mozilla.org/metrics/2010/04/05/firefox-page-load-speed-%E2%80%93-part-ii/
www.gomez.com/resources/whitepapers/survey-report-what-users-want-from-mobile/
www.gomez.com/resources/whitepapers/survey-report-what-users-want-from-mobile/

ptg8274462

selectively serving
images to mobile
Let’s start by removing the images in the “More in Football” section from the
core experience. It might be tempting to just use display:none and call it a day,
but that doesn’t fix the problem, it only hides it.

An image set to display:none will still be requested and downloaded by the
browser. So while the image won’t show up on the screen, the issue of the extra
request and weight is still there. Instead, as usual, the correct approach is to
start with mobile first and then progressively enhance the experience.

Begin by removing the images from the HTML entirely:
1.	 <ul class=”slats”>

2.	 	 <li class=”group”>

3.	 	 	

4.	 	 	 	 <h3>Kicker connects on record 13 field goals</h3>

5.	 	 	

6.	 	

Figure 4.2 The images
in the “More Football”
section take up a lot of
precious screen real estate
on small-screen devices.

Chapter 4 • responsive Media 99

ptg8274462

7.	 	 <li class=”group”>

8.	 	 	

9.	 	 	 	 <h3>Your favorite team loses to that team no one likes</h3>

10.	 	 	

11.	 	

12.	 	 <li class=”group”>

13.	 	 	

14.	 	 	 	 <h3>The Scarecrows Win 42-0</h3>

15.	 	 	

16.	 	

17.	

Obviously, the images will not load with this HTML. On the small-screen
display, that’s the way it’ll stay. For the larger sizes, a little JavaScript will bring
the images back. Using the HTML5 data-* attributes as hooks, it’s easy to tell
the JavaScript which images to load:
1.	 <ul class=”slats”>

2.	 	 <li data-src=”images/ball.jpg” class=”group”>

3.	 	 	

4.	 	 	 	 <h3>Kicker connects on record 13 field goals</h3>

5.	 	 	

6.	 	

7.	 	 <li data-src=”images/goal_post.jpg” class=”group”>

8.	 	 	

9.	 	 	 	 <h3>Your favorite team loses to that team no one likes</h3>

10.	 	 	

11.	 	

12.	 	 <li data-src=”images/ball_field.jpg” class=”group”>

13.	 	 	

14.	 	 	 	 <h3>The Scarecrows Win 42-0</h3>

15.	 	 	

16.	 	

17.	

JavaScript
The first thing to add is a quick utility function to help select elements. It’s not
necessary, but it’s definitely useful to have around:
1.	 q : function(query) {

2.	 	 if (document.querySelectorAll) {

DD Custom data
attributes

Preceded by a
data- prefix, these at-
tributes store custom
data private to the
page, often for script-
ing purposes.

impLementing responsive design100

ptg8274462

3.	 	 	 var res = document.querySelectorAll(query);

4.	 	 } else {

5.	 	 	 var d = document,

6.	 	 	 a = d.styleSheets[0] || d.createStyleSheet();

7.	 	 	 a.addRule(query,’f:b’);

8.	 	 	 for(var l=d.all,b=0,c=[],f=l.length;b<f;b++) {

9.	 	 	 	 l[b].currentStyle.f && c.push(l[b]);

10.	 	 	 	 a.removeRule(0);

11.	 	 	 	 var res = c;

12.	 	 	 }

13.	 	 	 return res;

14.	 	 }

15.	 }

If you’re unfamiliar with native JavaScript, that might look a bit messy. That’s
OK. All the function does is take a selector, and return the elements that match
it. If you can grasp the code, that’s great. If not, as long as you understand what
it accomplishes, that’s enough for our purposes.

Armed with that function, the part that actually loads the images is pretty
straightforward:
1.	 //load in the images

2.		 var lazy = Utils.q(‘[data-src]’);

3.		 for (var i = 0; i < lazy.length; i++) {

4.	 	 var source = lazy[i].getAttribute(‘data-src’);

5.	 	 //create the image

6.	 	 var img = new Image();

7.	 	 img.src = source;

8.	 	 //insert it inside of the link

9.	 	 lazy[i].insertBefore(img, lazy[i].firstChild);

10.	 };

Line 2 grabs any elements with a data-src attribute applied. Then, in line 3 the
script loops through those elements. In lines 4–7, the script creates a new im-
age for each element using the value of the data-src attribute. The script then
inserts the new image (line 9) as the first element within the link.

With this JavaScript applied, the images aren’t requested right away. Instead,
they’re loaded after the page has finished loading, which is what we want. Now,
we just have to tell the script not to load for small screens.

Chapter 4 • responsive Media 101

ptg8274462

Guy Podjarny
peRFoRMance iMplications oF Responsive design

Guy Podjarny, or Guypo for short, is a web performance researcher and
evangelist, constantly chasing the elusive instant web. He focuses heavily on
mobile web performance, and regularly digs into the guts of mobile brows-
ers. He is also the author of Mobitest, a free mobile measurement tool,
and contributes to various open source tools. Guypo was previously the
co-founder and CTO of Blaze.io, later acquired by Akamai, where he now
works as a Chief Product Architect.

Responsive Web Design (RWD) tackles
many problems, and it’s easy to get lost in
questions around how maintainable, future-
friendly, or cool your responsive website will
be. In the midst of all of these, it’s important
to not lose sight of how fast will it be. Perfor-
mance is a critical component in your user’s
experience, and many case studies demon-
strate how it affects your users’ satisfaction
and your bottom line.

Today, smartphone browsers are often redi-
rected to dedicated mobile websites, known
as mdot sites, which tend to be significantly
lighter in content and visuals than their
desktop counterparts. This translates to hav-
ing fewer images, scripts and stylesheets to
download, which helps make those websites
faster. The equation is simple—downloading
fewer bytes with fewer requests is faster than
having more of both.

Responsive websites, however, don’t follow
this pattern. I recently ran a performance test
on 347 responsive websites (All the websites
listed on http://mediaqueri.es/ in March,
2012). I loaded the homepage of each in a
Google Chrome browser window resized to
4 different sizes, ranging from 320x480 to
1600x1200. Each page was loaded multiple

times using www.webpagetest.org, a web
performance measurement tool.

The results were depressing. Despite chang-
ing their look across window sizes, the weight
and load time of the website hardly changed.
86% of the websites weighed roughly the
same when loaded in the smallest window,
compared to the largest one. In other words,
despite the fact the websites look like an mdot
site when loaded on a small screen, they are
still downloading the full website content,
and are thus painfully slow.

While every website is different, three causes
for this over-downloading repeated across
practically all websites.

•	 Download and Hide

•	 Download and Shrink

•	 Excess DOM

download and Hide is by far the top reason for
this bloat. Responsive websites usually return
a single HTML to any client. Even on “Mobile
First” websites, this HTML contains or refer-
ences all that’s needed to provide the richest
experience on the biggest display. On a smaller
screen, sections that shouldn’t be shown are
hidden using the display:none style rule.

impLementing responsive design102

www.webpagetest.org
http://mediaqueri.es/

ptg8274462

Unfortunately, display:none doesn’t help per-
formance one bit, and resources referenced
in a hidden part of the page are downloaded
just the same. Scripts within hidden sections
still run. DOM elements are still created. As a
result, even when hiding the majority of your
page’s content, the browser will still evaluate
the page in resources and download all the
resources it can find.

download and shrink is a conceptually
similar problem. RWD uses fluid images to
better match the different screen sizes. While
visually appealing, this means the desktop-
grade image is downloaded every time, even
when loaded on a much smaller screen. Users
cannot appreciate the high quality image on
the smaller screen, making the excess bytes a
complete waste.

excess doM is the third episode of the same
story. RWD websites return the same HTML
to all clients. Browsers parse and process hid-
den areas of the DOM despite being hidden.
As a result, loading a responsive website on
a small screen results in a DOM that is far
more complicated than what the user experi-
ence demands. A more complicated DOM
leads to higher memory consumption, expen-
sive reflows, and a generally slower website.

These problems are not simple to solve, since
they’re the result of how RWD and brows-
ers work today. However, there are a few
practices that can help you keep your perfor-
mance under control:

•	 Use Responsive Images

•	 Build Mobile First

•	 Measure

Responsive Images are already discussed in
this book at length, and help address the
“Download and Shrink” problem. Since

images are the bulk of the bytes on each
page, this is the easiest way to significantly
reduce your page’s weight. Note that CSS
images should be responsive as well, and can
be replaced using media queries.

Build Mobile First means going a step beyond
designing a Mobile First website, and actually
coding a dedicated website for the lowest reso-
lution you care about. Once implemented, this
website should perform as well as other mdot
sites, and be reasonably lightweight. From
that point on, only enhance the page using
JavaScript or CSS, to avoid over-downloading.
Clients that have no JavaScript support will
get your basic experience, which should be
good enough for these edge cases. Note that
enhancing with JavaScript and keeping perfor-
mance high isn’t simple, and best practices for
it are not fully established yet—which brings
me to my next point.

Measure. Treat performance as a core part of
your website’s quality, and don’t ship without
understanding and accepting its performance.
If you know your mobile website weighs over
1 MB, you’re likely to delay its launch until
you do something about it. Measurement
tools vary, but I would recommend Mobit-
est for testing on real devices (http://akamai.
com/mobitest) and WebPageTest for testing
on desktop browsers (www.webpagetest.
org), resized them using the setviewportsize
command.

In summary, Responsive Web Design is a
powerful and forward thinking technique, but
it also carries with it significant performance
implications. Make sure you understand
these challenges and design to avoid them,
so that users won’t abandon your website
before they got to experience your amazing
visuals and content.

Chapter 4 • responsive Media 103

www.webpagetest.org
www.webpagetest.org
http://akamai.com/mobitest
http://akamai.com/mobitest

ptg8274462

Introducing matchMedia
In Chapter 3, “Media Queries,” the script we built to toggle the display of the
navigation on small screens checked to see if the list items in the navigation
were floated. If they were, the collapse feature was created. This time, let’s use
the handy matchMedia() method.

The matchMedia() method is a native JavaScript method that lets you pass in
a CSS media query and receive information about whether or not the media
query is a match.

To be specific, the function returns a MediaQueryList object. That object has
two properties: matches and media. The matches property returns either true (if
the media query matches) or false (if it doesn’t). The media property returns
the media query you just passed in. For example, the media property for window.
matchMedia(“(min-width: 200px)”) would return “(min-width: 200px)”.

matchMedia() is supported natively by Chrome, Safari 5.1+, Firefox 9, Android
3+, and iOS5+. Paul Irish has created a handy polyfill for browsers that don’t
support the method.

With the matchMedia polyfill in place, telling the browser to insert only the
images above the first breakpoint simply requires wrapping the code inside
a matchMedia check:
1.	 if (window.matchMedia(“(min-width: 37.5em)”).matches) {

2.	 	 //load in the images

3.	 	 var lazy = Utils.q(‘[data-src]’);

4.	 	 for (var i = 0; i < lazy.length; i++) {

5.	 	 	 var source = lazy[i].getAttribute(‘data-src’);

6.	 	 	 //create the image

7.	 	 	 var img = new Image();

8.	 	 	 img.src = source;

9.	 	 	 //insert it inside of the link

10.	 	 	 lazy[i].insertBefore(img, lazy[i].firstChild);

11.	 	 };

12.	 }

Now when the page is loaded on a phone, or the screen is sized down, the
images are no longer requested (Figure 4.3). This is a big win for performance
on small screens. There are now three fewer HTTP requests, and the size of
the page has been reduced by about 60KB (the size of those three images
combined). Best of all, the headlines are still there and the links are completely
functional. The experience doesn’t suffer at all.

DC Note
Irish’s polyfill is
available on GitHub
at https://github.
com/paulirish/
matchMedia.js or in
the example files on
the companion site
at http://www.
implementing
responsivedesign.com.

DD Polyfill
A snippet of code
that provides support
for a feature the
browser does not yet
support natively.

impLementing responsive design104

http://www.implementingresponsivedesign.com
http://www.implementingresponsivedesign.com
http://www.implementingresponsivedesign.com
https://github.com/paulirish/matchMedia.js
https://github.com/paulirish/matchMedia.js
https://github.com/paulirish/matchMedia.js

ptg8274462With those images out of the way, we can focus on the lead-in image and the
logo. We want those images, the logo in particular, to show up no matter the
resolution. So, instead of conditionally loading them, we’ll load them every
time, but sized appropriately. This is where things get hairy.

Responsive image strategies
They say there are only seven stories in the world, they just get told in different
ways. In the same way, there are currently only three strategies for handling
responsive images: fighting the browser, resignation, or going to the server.

Fighting the browser
Most front-end solutions attempt to fight the browser. They try their best to
switch which image is loaded before the browser can download the wrong one.

This is an increasingly difficult task. Browsers want pages to load quickly, so
they go to extreme lengths to download images as quickly as possible. Of
course, this is a good thing—you want your site to load as quickly as possible.
It’s really only annoying when you want to beat them to it.

Figure 4.3 On small
screens, the images in the

“More in Football” section
won’t be requested, greatly
improving the performance
of the page.

Chapter 4 • responsive Media 105

ptg8274462

Resignation
A few strategies out there basically admit defeat to the browser. Typically the
approach is to load the small-screen image first, by default. Then, if necessary,
load the larger image for larger screens as well.

Obviously this is not ideal. Larger screen devices will be making two requests
where only one is needed. That’s something to avoid if possible. Performance
is important on large-screen devices, too.

Going to the server
Finally, a few methods use the server and some form of detection to determine
which image to load. This method doesn’t have to race the browser, because all
the logic is executed before the browser ever sees the HTML.

However, going to the server is also not particularly future friendly. Main-
taining information about every device that might request your content will
become increasingly difficult as they proliferate (thanks to the decrease in the
cost of manufacturing computing devices). Information about devices will also
be less reliable as more and more devices allow content to be viewed in differ-
ent ways: projections, embedded webviews, or on another screen entirely.

Responsive image options
There are limitations to every approach to responsive images currently available.
To illustrate this, let’s look at a couple different techniques for setting responsive
images, and evaluate whether they’re right for the Yet Another Sports Site page.

Sencha.io Src
Sencha.io Src is as close as you’re going to get to a plug-and-play solution for
responsive images. The service, originally created by James Pearce, takes an
image that you pass and returns it resized. To use it, you simply preface your
image source with the Sencha.io Src address like so:

http://src.sencha.io/http://mysite.com/images/football.jpg

impLementing responsive design106

http://src.sencha.io/http://mysite.com/images/football.jpg

ptg8274462

Sencha.io Src uses the user agent string of the device making the request to figure
out what size the device is and then resizes your image accordingly. By default, it
resizes the image to 100% of the screen width (though it will never size up).

A great deal of customization is possible. For instance, if you want the service to
resize your image to a specific width, you can pass that along as another param-
eter. For example, the following line of code resizes the image to 320px wide:

http://src.sencha.io/320/http://mysite.com/images/football.jpg

Sencha.io Src is also smart enough to cache the requests, so the image isn’t
generated each and every time the page loads.

Unfortunately, this probably isn’t the best solution for Yet Another Sports Site.
Sizing the images to 100% of the screen size only helps on small screens. On
a large display, when the article spans two columns, the image remains its origi-
nal size because Sencha.io Src looks at the screen width, not the width of the
containing element. While it’s possible to tell Sencha.io Src to use that width,
it involves using the service’s experimental client-side measurements feature
and doing a bit of JavaScript hackery.

While the current version of the page doesn’t run into the issue, Sencha.io Src
is also limiting if you want to do more than just resize an image, for instance,
if you want to recrop the image. Perhaps the “More in Football” images could
become square thumbnails at some point. If they did, a simple resize wouldn’t
work. Some art direction capability is needed, and Sencha.io Src doesn’t allow
for that.

You might also be a bit uncomfortable using a third-party solution for this. If
the company changes its policy or goes out of business, you could very well be
out in the cold and looking for another solution entirely.

Adaptive Images
Another solution bordering on plug-and-play is Adaptive Images, created
by Matt Wilcox. It determines the screen size and then creates, and caches,
a resized version of your image.

It’s an excellent solution for an existing site where you may not have time to
restructure your markup or code. Getting it up and running is a simple three-
step process:

DC Note
You can find detailed
documentation for
Sencha.io Src at
http://docs.sencha.
io/0.3.3/index.
html#!/guide/src

DC Note
The code for Adap-
tive Images can be
found at http://
adaptive-images.com

Chapter 4 • responsive Media 107

http://src.sencha.io/320/http://mysite.com/images/football.jpg
http://docs.sencha.io/0.3.3/index.html#!/guide/src
http://docs.sencha.io/0.3.3/index.html#!/guide/src
http://docs.sencha.io/0.3.3/index.html#!/guide/src
http://adaptive-images.com
http://adaptive-images.com

ptg8274462

1. Place the .htaccess and adaptive-images.php files that are included in the
download into your root folder.

2. Create an ai-cache folder and grant it write permissions.

3. Add the following line of JavaScript to the head of your document:
<script>document.cookie=’resolution=’+Math.max(screen.width,

screen.height)+’; path=/’;</script>

That line grabs the resolution of the screen and stores it in a cookie for future
reference.

While there are many options you can configure in the adaptive-images.php,
much of the time you’ll be able to get away with just setting the $resolutions
variable to include your breakpoints:

$resolutions = array(860, 600, 320); // the resolution breakpoints to

use (screen widths, in pixels)

If you’re paying close attention, you’ll notice that the breakpoints are slightly
off from the CSS of the Yet Another Sports Site page. There’s no 320px break-
point in the CSS, and the highest two breakpoints, 1300px and 940px, are not
included in the $resolutions array. This is because of the way the script works.

The smallest breakpoint, in this case 320px, is the size at which the image will
be created for any screen that does not exceed that width. So, for example, a
300px screen will receive a 320px image because it’s the lowest size defined in
the $resolutions array. A 321px screen, since it exceeds the 320px value de-
fined in the array, will receive the next size image—in this case, 600px. If we left
600px as our first breakpoint, any device with a screen size below 600px would
have received a 600px image.

We also don’t need the two highest breakpoints, because again, the script will
try to resize an image to the breakpoint size. It will never size the image larger
than it already is, so really, anything above 624px (the physical dimension of
the image) doesn’t matter much—the script won’t resize the image.

Once created, the images are stored in the ai-cache folder (you can change the
name) so they don’t have to be regenerated. There’s also a configuration setting
to control how long the browser should cache the image.

The installation is simple, and again, it’s a great solution for existing sites that
need to get something in place, but it’s not without its faults. Unfortunately, no
opportunity for art direction exists since the images are dynamically resized.

impLementing responsive design108

ptg8274462

Art direction and responsive images
Much of the conversation about responsive images revolves around file
size. While that’s an important consideration, it isn’t the only one. Some-
times, resizing an image for smaller screens can reduce its impact.

Consider this example photo of a football helmet.

The photo looks nice at its original size,
and is well balanced. If we make the image
smaller, suddenly the helmet is almost too
small to be recognized.

This is an instance where art direction is nec-
essary. Resizing the image alone causes it to
lose its impact and recognizability. By tight-
ening the crop instead, we keep the focus on
the helmet despite the small image size.

Chapter 4 • responsive Media 109

ptg8274462

The script also doesn’t help you if the image is actually smaller at a large resolu-
tion. For the Yet Another Sports Site page, that’s a problem. When the screen is
above 1300px, the article goes to two columns and the image is placed inside
one of them, reducing its size. Using the Adaptive Images script, the largest ver-
sion of the image will still be downloaded.

The other concern with this approach is that the URL stays the same, regardless
of the size of the image being requested. This could cause issues with Content
Delivery Networks (CDNs). The first time a URL is requested, the CDN may
cache it to improve the speed the next time that same resource is requested. If
multiple requests for the same URL are made via the same CDN, the CDN may
serve up the cached image, which may not be the size you actually want served.

What’s ahead for responsive images?
Just to be clear: relying on a combination of server-side detection and
JavaScript cookies is entirely a stopgap method. If there were something
more permanent out there, I’d advocate it. Unfortunately every respon-
sive image method available today is essentially a hack, a temporary
solution to cover up the problem.

More long-term solutions, such as a new element, new attribute or new
image format, have been discussed. In fact, if you’re feeling a bit frisky,
there’s a fully functioning polyfill for one such as-yet non-existent ele-
ment available on GitHub at https://github.com/scottjehl/picturefill.
Unfortunately, the problem is far from being solved because the answer
isn’t as simple as “what is easy for developers to use.”

In a blog post discussing the conflict of opinions between two popular
proposed solutions, Jason Grigsby hit the problem on the head.4 To
improve performance, browsers want to be able to download images
as soon as possible, before the layout of the page is known. Developers,
on the other hand, rely on knowledge about the page layout to be able
to determine which image to load. It’s a difficult nut to crack.

I am confident that with time, a proper solution will emerge. In the
meantime, as already mentioned, the best approach will vary depending
on the project at hand.

4 Read more about the real conflict behind <picture> and @srcset at http://blog.cloudfour.com/
the-real-conflict-behind-picture-and-srcset/

DD Content Delivery
Network

A collection of servers
deployed in multiple
locations to help de-
liver content more
efficiently to users.

impLementing responsive design110

https://github.com/scottjehl/picturefill
http://blog.cloudfour.com/the-real-conflict-behind-picture-and-srcset/
http://blog.cloudfour.com/the-real-conflict-behind-picture-and-srcset/

ptg8274462

Wait, what’s the answer here?
Ultimately, no definitive solution currently exists for responsive images. Each
method has advantages and disadvantages. The approach you take will depend
on the project you’re working on.

Of the two approaches we’ve discussed, settling on Adaptive Images is probably
the best route to take since it doesn’t require any reliance on a third-party source.

Background images
The folks over at Yet Another Sports Site are pretty happy with the site, but
they’d like to see a visual indication in the header that helps visitors identify
which section of the site they’re in.

After 30 seconds of exhausting Photoshop work, we provide them with two
silhouettes of footballs as shown in Figure 4.4.

They’re happy with the way this looks on the large screen, but on anything
smaller than the 53.75em breakpoint, where the logo starts to overlap, they’d
like the background image to go away.

This is another area where building mobile up is helpful. Let’s consider what
would happen if we built the site desktop down using media queries.

Your base styles would be the place to include the background image and you
would have to override it in a later media query. It would looked something like this:
1.	 /* base styles */

2.	 	header[role=”banner”] .inner{

3.	 	 background: url(‘../images/football_bg.png’) bottom right

no-repeat;

4.	 	}

5.		

6.		 @media all and (max-width: 53.75em) {

7.	 	 header[role=”banner”] .inner {

8.	 	 	 background-image: none;

9.	 	 }

10.	 }

Figure 4.4
The header sporting
its spiffy new back-
ground image.

Chapter 4 • responsive Media 111

ptg8274462

On paper, this seems fine. But in reality, for many browsers, this would result in
downloading the image even on a small screen device where it wouldn’t be used.
Most notable among these is the default browser on Android 2.x. Remember,
while version 4 is current at the time of this writing, about 95 percent of Android
devices are running an earlier version. This means that almost all Android traffic
on mobile devices would be downloading the image without needing it.

To avoid this penalty, a better method would be to declare the background
image within a media query like so:
1.	 /* base styles */

2.		 @media	all	and	(min-width:	53.75em)	{

3.	 	 header[role=”banner”] .inner{

4.	 	 	 background: url(‘../images/football_bg.png’) bottom right

 no-repeat;

5.	 	 }

6.	 	}

7.	

8.	 	@media all and (max-width: 53.75em) {

9.	 	 header[role=”banner”] .inner {

10.	 	 	 background-image: none;

11.	 	 }

12.	 }

Doing that would be enough to get Android to play along nicely.

Since we built the page mobile up, the whole process is much simpler. The base
experience doesn’t need the background image, so we can introduce it in a
media query later on:
1.	 /* base styles */

2.	 	@media all and (min-width: 53.75em) {

3.	 	 header[role=banner] .inner{

4.	 	 	 background: url(‘../images/football_bg.png’) bottom right

no-repeat;

5.	 	 }

6.	 }

Using this approach means that only browsers that need to display the back-
ground image will request it—performance problem solved!

DC Note
If you want the
juicy details about a
variety of methods
for replacing and
hiding background
images, take a look
at http://timkadlec.
com/2012/04/
media-query-asset-
downloading-results/
to see the tables of
results from tests I’ve
been running.

impLementing responsive design112

http://timkadlec.com/2012/04/media-query-assetdownloading-results/
http://timkadlec.com/2012/04/media-query-assetdownloading-results/
http://timkadlec.com/2012/04/media-query-assetdownloading-results/
http://timkadlec.com/2012/04/media-query-assetdownloading-results/

ptg8274462

Of course, once again, building mobile up means that Internet Explorer 8 and
below won’t see this background image by default. However, we already have
an IE-specific stylesheet in place thanks to conditional comments. We can just
add this declaration in there and we’re good to go.

While we’re at it
Currently, we’re using web fonts to load the ChunkFive font that is being used
in the header elements. The style declaration looks like this:
1.	 @font-face {

2.	 	 font-family: ‘ChunkFiveRegular’;

3.	 	 src: url(‘Chunkfive-webfont.eot’);

4.	 	 src: url(‘Chunkfive-webfont.eot?#iefix’) format

 (‘embedded-opentype’),

5.	 	 	 url(‘Chunkfive-webfont.woff’) format(‘woff’),

6.	 	 	 url(‘Chunkfive-webfont.ttf’) format(‘truetype’),

7.	 	 	 url(‘Chunkfive-webfont.svg#ChunkFiveRegular’) format(‘svg’);

8.	 	 font-weight: normal;

9.	 	 font-style: normal;

10.	 }

That declaration works nicely. The browser grabs the file it needs and renders
the font. The sizes of the files aren’t even that bad. There’s a downside though.
Currently, WebKit-based browsers won’t display text styled with a web font
until that web font has been downloaded. This means that if a user comes along
on an Android, BlackBerry, or iPhone over a slow connection (or uses a laptop
through a tethered connection for that matter), the header elements will take
some time to actually display. This is a confusing experience for users and
should be avoided.

We can’t determine bandwidth (yet—check out Chapter 9, “Responsive Expe-
riences,” for a preview of what’s to come), but we know the likelihood of a slow
network is highest with a mobile device. It would be nice to save the user the
trouble and load the fonts for larger screens only.

The approach we used to conditionally load background images works for fonts
as well. So, let’s move the @font-face declaration inside of a media query. Doing
so ensures that devices below that breakpoint will not attempt to grab the fonts:

DC Note
Why all the different
font files? You have
browser differences
to thank for that.
While browser sup-
port is pretty good,
they can’t seem to
agree on one format.

Chapter 4 • responsive Media 113

ptg8274462

1.	 @media	all	and	(min-width:	37.5em)	{

2.	 	 ...

3.	 	 @font-face {

4.	 	 	 font-family: ‘ChunkFiveRegular’;

5.	 	 	 src: url(‘Chunkfive-webfont.eot’);

6.	 	 	 src: url(‘Chunkfive-webfont.eot?#iefix’)

 format(‘embedded-opentype’),

7.	 	 	 					url(‘Chunkfive-webfont.woff’) format(‘woff’),

8.	 	 	 	 url(‘Chunkfive-webfont.ttf’) format(‘truetype’),

9.	 	 	 	 url(‘Chunkfive-webfont.svg#ChunkFiveRegular’)

format(‘svg’);

10.	 	 	 font-weight: normal;

11.	 	 	 font-style: normal;

12.	 	 }

13.	 }

With that small tweak in place, the web font will load only on screens larger
than 37.5em (~600px). While it’s still possible for a user with a slow connec-
tion to get stuck with the WebKit delayed loading bug, by removing the fonts
from small-screen displays we’ve also removed the most likely victim: people
using mobile devices (Figure 4.5).

Figure 4.5
Web fonts will
no longer be
loaded on small
screens to improve
performance.

impLementing responsive design114

ptg8274462

High-resolution displays
Just in case you thought swapping images out based on screen size wasn’t dif-
ficult enough, it turns out there is at least one more situation that might require
different images: high-resolution displays. The problem really started with the
Retina display on the iPhone 4, but it’s been exacerbated by the iPad 3 and the
latest versions of the MacBook Pro both supporting a Retina display.

The Retina display sports a whopping 326ppi (pixels per inch) pixel density,
compared to 163ppi for the iPhone 3 display. This high density means that
images can appear to be incredibly detailed and sharp—if they’re optimized
for the display. If they’re not, they will appear grainy and blurry.

Creating images for high-resolution displays means creating larger images, which
in turn means larger file sizes. Therein lies the rub. You don’t want to pass these
larger images to screens that don’t need them. Currently, there isn’t a great way
to do that with content images: it’s the same sort of problem we discussed previ-
ously when trying to load images appropriate for different screen widths.

For CSS images, you can use the min-resolution media query for all browsers
except those running on WebKit. For WebKit-based browsers, you must use
the –webkit-min-device-pixel-ratio media query.

The –webkit-min-device-pixel-ratio media query takes a decimal value
representing the pixel ratio. To target the Retina display on the iPhone, iPad, or
new MacBook Pro you need a value of at least 2.

The min-resolution media query takes one of two values. The first is the screen
resolution in either dots per inch or dots per centimeter. Doing this requires a
little math, and some of the early implementations were inaccurate. As a result,
I recommend using the new dots per pixel (dppx) unit. Not only does it re-
move the need for any math (it lines up perfectly with the ratio value accepted
by the –webkit-min-device-pixel-ratio media query), but it also avoids the
older, incorrect implementations. Support for the dots per pixel unit is still a
little sketchy, but since displaying Retina-ready images is a nice enhancement
rather than an essential feature, I’m pretty comfortable using it.

DD Pixel density
The number of pixels
within a specified
space. For example,
326ppi means
there are 326 pixels
within every inch of
a display.

Chapter 4 • responsive Media 115

ptg8274462

1.	 header[role=”banner”] .inner {

2.	 	 background: url(‘../images/football_bg_lowres.png’) bottom right

 no-repeat;

3.	 }

4.	 @media only screen and (-webkit-min-device-pixel-ratio: 2),

5.	 	 only screen and (min-resolution: 2dppx) {

6.	 	 	 header[role=”banner”] .inner {

7.	 	 	 	 background: url(‘../images/football_bg_highres.png’)

 bottom right no-repeat;

8.	 	 	 }

9.	 }

The above media query targets any device with a pixel ratio of at least 2. Lines
1–3 set the background image for low resolutions. Lines 4 and 5 target devices
with a pixel ratio of at least 2. If the pixel ratio is at least 2, then lines 8–10 apply
a higher-resolution image for the background.

SVG
One solution for both high-resolution displays and images that scale across
screen sizes is Scalable Vector Graphics (SVG). SVG images are vector images
whose behavior is defined in XML. This means they can scale well without
actually increasing file size. It also means they can be programmatically altered
and adjusted.

One great example of how SVG can improve an experience is the work Yiibu,
a mobile company in Edinburgh, did for the Royal Observatory at Greenwich.
The company was working on a project that involved a responsive site featuring
images of constellation patterns that needed to scale down. When using regular
images and scaling, the small-screen images lost much of their detail. Using
SVG and some smart scaling, Yiibu was able to adjust the images for small
screens so the detail was retained (Figure 4.6).

impLementing responsive design116

ptg8274462

Figure 4.6 Simply resizing the image resulted in a large loss of detail
(top right). By using SVG and some smart scaling, adjustments
could be made ensuring that the level of detail could be retained,
especially keeping text legible (bottom right).

There are two real issues standing in the way of SVG: browser support and lack
of tools. As usual, Internet Explorer 8 and under don’t play along. More im-
portantly, neither does the default browser on Android 2.x—the most popular
version of that platform. Those browsers that do support SVG images vary in
their level, and quality, of support.

The most popular tools for image creation and manipulation, such as Photo-
shop, are not built with vector formats like SVG in mind. If you want to create
SVG images, you need to find another tool to do it in.

As tools and browsers start to catch up, SVG images may become a very com-
mon tool in a web developer’s toolbox.

Chapter 4 • responsive Media 117

ptg8274462

other fixed-width assets
Images aren’t the only asset that present some problems for responsive sites.
Let’s look at two in particular: video and advertising.

Video
Embedding videos in a responsive site is, perhaps surprisingly, a little more
complicated than it first appears. If you’re using HTML5 video, it’s simple. You
can use the same max-width technique we discussed for making images fluid:
1.	 video{

2.	 	 max-width: 100%;

3.	 	 height: auto;

4.	 }

Most sites, however, pull their videos from a third party (YouTube or Vimeo,
for example) using an iFrame. If you apply the same trick, the width scales but
the height retains its original value, breaking the aspect ratio (Figure 4.7).

Figure 4.7 Unfor-
tunately, using
max-width: 100% and
height: auto on video
embeds will result in
the video breaking
the aspect ratio.

impLementing responsive design118

ptg8274462

The trick is something Thierry Koblentz called “intrinsic ratios.”5 The basic idea
is that the box that contains the video should have the proper aspect ratio of
the video (4:3, 16:9, and so on). Then, the video needs to fit the dimensions of
the box. That way, when the width of the containing box changes, it maintains
the aspect ratio and forces the video to adjust with it.

The first thing to do is create a wrapping element:
1.	 <div class=”vid-wrapper”>

2.	 	 <iframe></iframe>

3.	 </div>

The wrapper serves as the containing box so it needs to maintain the proper
aspect ratio. In this situation, the aspect ratio is 16:9. The video itself is posi-
tioned absolutely, so the wrapper needs an adequate amount of padding ap-
plied to maintain the ratio. To maintain the 16:9 ratio, divide 9 by 16, which
gives you 56.25%.
1.	 .vid-wrapper{

2.	 	 width: 100%;

3.	 	 position: relative;

4.	 	 padding-bottom: 56.25%’;

5.	 	 height: 0;

6.		 }

7.		 .vid-wrapper iframe{

8.	 	 position: absolute;

9.	 	 top: 0;

10.	 	 left: 0;

11.	 	 width: 100%;

12.	 	 height: 100%;

13.	 }

The styles above also position the iFrame absolutely within the wrapper and
set the height and width to 100% so it stretches to fill (lines 11–12). The wrap-
per itself is set to 100% of the article’s width (line 2) so it adjusts as the screen
size adjusts.

With these styles in place, the video responds to different screen sizes while
maintaining its original aspect ratio.

5 “Creating Intrinsic Ratios for Video” at www.alistapart.com/articles/creating-intrinsic-ratios-for-video/

DC Note
If you prefer, there’s
a helpful jQuery
plug-in called FitVids
that automates the
process of making
videos respond. Visit
GitHub at https://
github.com/dava-
tron5000/FitVids.js
to download it.

Chapter 4 • responsive Media 119

www.alistapart.com/articles/creating-intrinsic-ratios-for-video/
https://github.com/davatron5000/FitVids.js
https://github.com/davatron5000/FitVids.js
https://github.com/davatron5000/FitVids.js

ptg8274462

enhanCing the experienCe

As always, it’s worth taking a step back and considering how the experience can
be enhanced. At the moment, the video is being downloaded on all devices.
That might not be the best approach for the base experience. To speed up the
core experience, it would be nice to display only a link to the video. Then, for
larger screens, the video embed could be included.

To do this, start with a simple link:

Video highlights

You can also add a few simple styles to make sure the text link doesn’t look out
of place:
1.	 .vid{

2.	 	 display: block;

3.	 	 padding: .3em;

4.	 	 margin-bottom: 1em;

5.	 	 background: url(../images/video.png) 5px center no-repeat #e3e0d9;

6.	 	 padding-left: 35px;

7.	 	 border: 1px solid rgb(175,175,175);

8.	 	 color: #333;

9.	 }

There’s nothing too fancy going on here. We gave the link a little padding and
margin to set it apart from the rest of the content, and applied a background
with a video icon set to the left (Figure 4.8).

Now, with JavaScript, convert the link to the appropriate embed.

Figure 4.8 With
some styles in place,
the video link fits
nicely in with the rest
of the page.

impLementing responsive design120

ptg8274462

Add the following function to the Utils object in yass.js:
1.	 getEmbed : function(url){

2.	 	 var output = ‘’;

3.	 	 var youtubeUrl = url.match(/watch\?v=([a-zA-Z0-9\-_]+)/);

4.	 	 var vimeoUrl = url.match(/^http:\/\/(www\.)?vimeo\.com\

 /(clip\:)?(\d+).*$/);

5.	 	 if(youtubeUrl){

6.	 	 	 output = ‘<div class=”vid-wrapper”><iframe src=”http://

 www.youtube.com/embed/’+youtubeUrl[1]+’?rel=0”

 frameborder=”0” allowfullscreen></iframe></div>’;

7.	 	 	 return output;

8.	 	 } else if(vimeoUrl){

9.	 	 	 output = ‘<div class=”vid-wrapper”><iframe src=”http://

 player.vimeo.com/video/’+vimeoUrl[3]+’” frameborder=”0”>

 </iframe></div>’;

10.	 	 	 return output;

11.	 	 }

12.	 }

Let’s walk through the function.

The function takes the URL of the video as its only parameter. It then deter-
mines if the URL is a YouTube video or a Vimeo video using regular expres-
sions (lines 4–5). Depending on the URL type, it creates the embed markup
including the containing element and returns it (lines 5–11).

Armed with the getEmbed function, it’s easy to convert the video link to an
embed. Throw the following JavaScript within the matchMedia(“(min-width:
37.5em)”) test:
1.	 //load in the video embed

2.	 var videoLink = document.getElementById(‘video’);

3.	 if (videoLink) {

4.	 	 var linkHref = videoLink.getAttribute(‘href’);

5.	 	 var result = Utils.getEmbed(linkHref);

6.	 	 var parent = videoLink.parentNode;

7.	 	 parent.innerHTML = result + videoLink.parentNode.innerHTML;

8.	 	 parent.removeChild(document.getElementById(‘video’));

9.	 }

Chapter 4 • responsive Media 121

ptg8274462

The first two lines grab the link to the video and the link’s href. On line 5, the
link is passed to the getEmbed function we created. Once you have the result,
lines 6–8 insert it into the article and remove the text link (Figure 4.9).

Now the video embed is responsive, and is pulled in only when the screen size
is greater than 37.5em, ensuring that the base experience won’t need to make
the expensive HTTP requests to embed the video.

Advertising
Another fixed asset that presents some difficulties is advertising.

Like it or not, advertising is a key part of many businesses’ revenue stream
online. We won’t get into a debate here about advertising-based revenue versus
the pay-for-content model; that’s a discussion that gets ugly quickly. The reality
of the matter is that for many businesses, ad revenue is essential.

Figure 4.9 On large
screens (right) the
video is embedded
but small screens
will see a link to the
video instead.

impLementing responsive design122

ptg8274462

From a purely technical standpoint, advertising in a responsive layout isn’t
that difficult to implement. You could use JavaScript to conditionally load an
ad unit based on the screen size. Rob Flaherty, a developer in New York City,
demonstrated a basic method:6

1.	 // Ad config

2.	 var ads = {

3.	 	 leaderboard: {

4.	 	 	 width: 728,

5.	 	 	 height: 90,

6.	 	 	 breakpoint: false,

7.	 	 	 url: ‘728x90.png’

8.	 	 },

9.	 	 rectangle: {

10.	 	 	 width: 300,

11.	 	 	 height: 250,

12.	 	 	 breakpoint: 728,

13.	 	 	 url: ‘300x250.png’

14.	 	 },

15.	 	 mobile: {

16.	 	 	 width: 300,

17.	 	 	 height: 50,

18.	 	 	 breakpoint: 500 ,

19.	 	 	 url: ‘300x50.png’

20.	 	 }

21.	 };

This configuration sets up three different ads (leaderboard, rectangle, and
mobile). Each ad has a width (lines 4, 10, and 16), height (lines 5, 11, and
17), URL (lines 7, 13, and 19), and breakpoint at which point the ad should
load (lines 6, 12, and 18). You could use the matchMedia function to determine
which ad should be loaded based on the breakpoint.

Even better, the ad itself could be responsive. It could consist of HTML and
CSS that allow it to adjust to different screen sizes. Going this route would
eliminate the JavaScript dependency and potentially allow the ad to do some
cool things by playing on its interactive nature.

6 “Responsive Ad Demos” at www.ravelrumba.com/blog/responsive-ad-demos/

Chapter 4 • responsive Media 123

www.ravelrumba.com/blog/responsive-ad-demos/

ptg8274462

From a technical perspective, neither of these options is particularly difficult.
The problem is that creating and displaying an ad has a lot of moving parts.

Most ads are served by third-party networks or the creative pieces are devel-
oped externally and then submitted according to the specifications of the site.
At the moment, no major ad-serving networks accommodate varying ad sizes
based on screen size.

Using an internal ad serving platform is a bit more flexible, but if the creative
is developed outside your company, then you’ll need to be willing to do some
education. The people creating the ad materials may not be up to speed on
what’s going on.

More importantly, ads are currently sold much like they are in print: You pay
based on the size and placement of the ad. So how exactly do you do that when
the size and placement vary?

One solution is to sell ad groups instead of ads. For example, instead of selling
a skyscraper ad, you sell a Premier Group ad (or whatever you want to call it).
The Premier Group may consist of a skyscraper for screens above 900px wide,
a boom box for screens above 600px but below 900px, and a small banner for
screen sizes below that point.

Obviously, this won’t be an easy transition. Creative teams, decision makers,
and the salesforce all need to be educated on why this approach makes more
sense than buying a defined ad space. It won’t be an easy sell, but with time it
should get easier.

The other consideration here is that some companies may want to target only
a single form factor. Perhaps their service is something specific to mobile
devices, and they decide they’d only like to serve their ads to those smaller
screens. That of course throws a little wrinkle into the ad groups, as things start
to get broken up.

Ultimately, I’d like to see the discussion of responsive advertising lead to fewer
ad spots and a higher cost per ad. Sites whose revenues are ad-based frequently
overload their pages with a plethora of ads. This makes the situation more dif-
ficult when trying to handle the small-screen experience. Do you hide all those
ads, thereby limiting page views for your advertisers, or do you cram them all
in there and ruin the experience for your visitors?

Instead of loading up pages with more and more ads, reduce the amount of
ads on a page. Instead of ten ad slots at $1,000 per month, offer three at $4,000

impLementing responsive design124

ptg8274462

each. Make the ad spaces something worth coveting. It benefits advertisers be-
cause they have fewer ads competing for attention, and it benefits users because
they are greeted with a much better experience.

Unfortunately there’s a chicken and the egg problem: advertising rates are cur-
rently a race to the bottom. Ads struggle to get quality click-through rates so
the way to compete is to see how far you can lower the cost of entry. Someone
has to be bold enough to make that first step.

Wrapping it up
Performance is an important consideration for any site. Loading images that are
unnecessary or larger than needed can have a serious impact on page load time.

The CSS solution of display:none is not viable. It hides images from view, but
they’re still requested and downloaded. If you want images to show only above
a certain breakpoint, the better bet is to load them conditionally, after the page
load has occurred.

Responsive images are an unsolved problem. There have been many attempts
at a solution but each has its own set of problems. The best thing you can do
is take time before each project to consider which approach will work best
for that site.

To hide background images without having to download them, include the
image in a media query. Setting it in your base styles and then trying to hide
it results in the image being downloaded in the majority of cases.

High-resolution displays, such as the Retina display on latest versions of the
iPhone, iPad, and MacBook Pro, pose another challenge. There is a solution for
CSS-based images, which can use the min-resolution media query.

Video and advertising are also concerns. For video, using the intrinsic ratio
method can help you to scale the video appropriately across screen sizes. As
always, be conscious of the performance. It may be best for users to simply link
to the video on small screens and embed on larger ones.

For advertising, the technical challenges are not difficult to solve. If you’re load-
ing ads from your own system, JavaScript or some responsive HTML and CSS
can help the ads change for different resolutions. The bigger problem arises in
getting sales teams and third-party advertising networks to get on board.

Chapter 4 • responsive Media 125

ptg8274462

This page intentionally left blank

ptg8274462

Chapter 5

Planning
Before anything else,

preparation is the key to success.
—alexander Graham Bell

ptg8274462

Now that we’ve covered the basic ingredients of fluid layouts, media queries,
and responsive media, we can take a step back and look at how responsive
design affects the rest of the process, beginning with planning. Preparation is
key, whether you’re marching into battle, running a marathon, or building a
responsive site. Building responsively means taking into account the diverse
ecosystem of devices. Without proper preparation you’ll find yourself trying
to juggle the missing pieces and the quality of your site will suffer significantly.
You need a plan.

That doesn’t mean you’ll stick to your plan from start to finish. In an environ-
ment that changes as swiftly as the Web does, you’ll almost certainly encounter
bumps in the road along the way. New platforms and devices emerge, deadlines
shift, and priorities change. So, while it’s important to have a process in place,
it’s equally important to be flexible and adapt. Plan to roll with the punches.

Choosing to be responsive
In 1997, in the middle of the first dot-com bubble, IBM aired a commercial
featuring two businessmen seated at a conference table. One man was reading a
newspaper while the other typed on a computer. The man reading the newspa-
per remarked, “It says here, the Internet is the future of business. We have to be
on the Internet.”

The other man looked up from his computer and asked, “Why?”

After a brief pause, the first man replied, “Doesn’t say.”

It’s a humorous commercial, but it highlights a very real concern with many
web projects: technology gets put ahead of strategy. Companies blindly latch
onto the latest buzzword, social media craze, or hot platform, never consider-
ing whether it makes sense to do so.

The first step with any responsive project should be to determine whether em-
barking on the project makes any sense at all. Are you doing it because it’s hip and
cool? Or are you doing it because it makes sense for your specific situation?

ImplementInG responsIve desIGn128

ptg8274462

Considerations
So, should you build a responsive site? The short and boring answer is:
It depends. Before you decide, there are several factors to consider:

•	 Performance

•	 Context

•	 Content negotiation

•	 Time investment

•	 Support

•	 Advertising

If any of these considerations pose a serious roadblock, you may want to opt for a
nonresponsive approach—for now. Let’s look at each of them a bit more closely.

Performance
Performance is an integral component of the user experience. What makes
sense in terms of performance on one device or on one kind of network may
not apply on another device.

Consider, for example, optimizing performance for mobile networks. On a
wired connection, it makes sense to include styles and scripts externally. That
way, the scripts and styles can be cached so the user won’t have to download
them again. On devices running on mobile networks, however, external styles
and scripts can severely hamper your site’s performance. Mobile networks
suffer from dramatically increased latency, as well as reduced bandwidth, when
compared to wired connections. As a result, when considering the perfor-
mance of your site on a mobile connection, it often makes more sense to inline
styles and scripts to reduce the number of requests.

Depending on how you swap out the images on a page, you may end up forcing
the user to download multiple versions—even though he’ll only ever need one.
If you decide to hide content on smaller screens, that markup and CSS is still
downloaded. If you’re not careful about how you build your site, this can result
in a site that is incredibly bloated and slow. It’s possible to address these per-
formance concerns with careful consideration, but it’s not easy and, therefore,
most people don’t.

CC Note
Responsive design
and separate sites
aren’t mutually
exclusive. You can
(and should) still
make use of the
flexibility that media
queries offer with a
stand-alone mobile
site. Read the sidebar
by Tom Maslen
for more.

Chapter 5 • planning 129

ptg8274462

Context
The user experience on your site will vary depending on context. Different
devices can be used for different tasks and in different environments. Mobile,
in particular, can be used much differently than, say, a desktop computer.

For example, a geolocation service like Foursquare may interact in very dif-
ferent ways depending on the device in use. A news site, on the other hand,
will work pretty consistently across different devices, because the experience
doesn’t rely as much on the context.

An event site might take advantage of knowing the user’s location: If you can
determine that the user is on his device on the day of a concert, and within a
certain radius of the venue, then it would make sense to optimize the experi-
ence from his perspective, versus someone who’s only considering whether
or not to come to the event.

Content negotiation
You might also choose to reorganize or restructure the content of your site. Say
a page has a large primary column and an aside. If you made the layout one col-
umn, the side column would be pushed below everything in the primary column.
That’s not always what you want. In many cases, the content in that side column
may be far more important than the content toward the bottom of the primary
column. If you don’t reorder the content, that hierarchy will be lost (Figure 5.1).

Time investment
A responsive approach typically, and probably not surprisingly, requires a
greater investment of time up front than a nonresponsive approach. You’re
considering numerous devices with varying capabilities and that takes time.
You need to take stock of what devices exist, what devices to support, and how
someone using a particular device might want to interact with your content.
There are a lot more variables in play.

Not all of this time is lost. Much of it will be made up in the long run, when
you’re maintaining one site instead of many. So what you lose in the initial design
of the project, you’ll most likely make up in maintenance costs.

ImplementInG responsIve desIGn130

ptg8274462

Still, if you need to launch next month, a responsive approach is prob-
ably not feasible. If you have time to devote to creating a high-quality
site, that’s when you should be thinking responsively.

Support
Building a responsive site from the desktop down, as it is still most often
done, presents a problem for many mobile devices. While modern Web-
Kit browsers have good support for media queries, many other popular
mobile browsers do not. If you start with the desktop experience, those
devices will be greeted with the desktop version of the site—assuming
they can handle it.

Figure 5.1 On large screens, the button to download the YAML framework is
prominently displayed to the right of the screen. On smaller screens, it gets buried
well out of sight.

Chapter 5 • planning 131

ptg8274462

If you instead take a page from the progressive enhancement playbook and flip
this approach on its head (as discussed in Chapter 3, “Media Queries”) you can
avoid this problem. Code for the least capable browser first. Then use media
queries to progressively enhance the experience, starting with the smallest
screen and building up.

If you want to capitalize on the ubiquity of the Web, building for the least
capable browser first is the only responsible option. There’s no guarantee that
new and popular devices will be any more capable than current devices.

Advertising
The issue of advertising on responsive sites goes beyond mere technical limitations.
A fundamental gap exists between how the industry is structured today, and where
it needs to be tomorrow. Networks, clients, agencies—all of them need to be edu-
cated on how to create ads that will appear in different sizes on different devices.

From the technical side of things, not only does the solution have to allow for
different ads to be served to different devices, but it must also allow for the
opportunity for an advertiser to not display their ads at some resolutions. For
example, an advertiser may decide that their product is best served by placing
a mobile ad, and only a mobile ad. As Jason Grigsby1 mentioned in a conversa-
tion with me about this topic “segmentation is part of advertising.”

Solving the issues of selling and producing advertising for responsive designs
is an important step because advertisers stand to benefit substantially from
placing appropriate ads on a carefully crafted responsive site. Large banner ads
are lost on small screens on a nonresponsive site. A responsive approach can
ensure that an appropriate ad is served for each resolution.

Conclusion
Despite the limitations of our current tools and mindset, don’t dismiss the
potential of responsive design. When used carefully, and in conjunction with
the right techniques, a responsive approach can be the starting point for most
sites. Just remember that being responsive is not the destination. A responsive
approach is a big piece of the puzzle, but in the end it’s just one piece.

1 www.cloudfour.com

ImplementInG responsIve desIGn132

www.cloudfour.com

ptg8274462

Once you’ve determined that a responsive approach is right for your project,
you need to decide how you’re going to implement it. Responsive design isn’t
something you can just sprinkle on at the end. You need to consider it carefully
throughout the process.

Consider your analytics
With 35 billion Internet-enabled devices in use, you can’t possibly optimize for
each one individually. First, you need to identify the types of devices that are
most important in the context of your project. Then build in a way that’s aimed
at these, but that will also accommodate the maximum number of remaining
devices out there.

While one of the benefits of responsive design is that your layout can be almost
device agnostic, this doesn’t mean you should ignore the device itself—quite
the opposite. Each device has different capabilities, limitations, and potential
uses. Support varies from platform to platform. Devices may be used on dif-
ferent types of networks, which impacts performance. Depending on the form
factor of a device, you may need to adjust the user interface to improve the
experience (Figure 5.2).

Figure 5.2 Devices
come in all shapes
and sizes, which
affects how you
should design
your site.

Chapter 5 • planning 133

ptg8274462

To understand which devices and form factors you should be optimizing
for, you need to know what devices are being used to view your site and what
they’re capable of. Armed with this information, you can start making deci-
sions about just which devices to test on, and which features to enhance for
different platforms.

Carefully comb through your analytics and see what devices people are using.
Find the behaviors. For example, are there devices that are used frequently, but
in shorter sessions? Perhaps the experience needs to be improved for them.

Then, back up this information with market share data. For example, if you find
the traffic for a particular device is very low, but the market share is quite high,
that’s a hint that something is lacking in that experience.

A word of caution: Be very careful that you are considering all factors when
drawing conclusions from your site’s analytics. Devices vary dramatically in
how they communicate with your analytics program of choice as it attempts to
collect data. This can lead to stats that are skewed in one direction or the other.

Skewed site analytics
For example, many analytics services, including the popular Google Analytics,
use a snippet of JavaScript as the default method of tracking. That code snippet
then passes along information about visitors and their devices to the analytics
provider. The problem with a JavaScript-driven approach is that you may very
well be missing out on a significant segment of your visitors.

Many mobile devices lack support for JavaScript. While the most common
offenders are feature phones, many more capable smartphones are susceptible
to this problem as well. For example, many BlackBerry devices have JavaScript
support turned off by default. Since a large number of users will never enable it,
they could be visiting your site without any record of them ever being there.

An even greater concern is the fact that devices have varying levels of support
for JavaScript. Partial support means not only that you can’t ensure that your
analytics will be complete, but you also can’t guarantee the analytics you do
get are accurate.

ImplementInG responsIve desIGn134

ptg8274462

One alternative is to use an image beacon approach rather than JavaScript.
Google Analytics actually uses this method in its alternate “mobile” snippet.
The mobile snippet is a chunk of server-side code that creates an img element
on your page. The src attribute of the img sends the visitor and device informa-
tion back to Google for tracking.

There are some potentially serious downsides to using server-side code. Unless
you make adjustments to the default snippet, you’ll lose ancillary information
such as what version of Flash the visitor has installed, screen resolution, and
level of JavaScript support. You’ll lose the ability to perform event tracking and
track outbound links, because the snippet cannot be adjusted to track these out
of the box.

What you’ll gain by using the image beacon approach is a more complete pic-
ture of the devices and browsers used to access your site. The top devices and
browsers in use may shift only slightly from the JavaScript-based results, but
the long tail of smaller numbers will typically extend—often significantly. You
may be surprised to find how many devices are being used to access your site.

Finally, be wary of self-fulfilling prophecies. If you haven’t optimized your site
for different platforms and browsers, don’t be surprised if that portion of your
traffic is very low. When you don’t water your plants, they die.

Which stats matter
After considering your existing site analytics, it’s important to study the general
statistical trends in the market as a whole. If a platform or browser is signifi-
cantly underrepresented when compared to the broader market, it’s a clue to
dig a little deeper and think critically about why that might be the case. It could
be that you’ve been dissuading those visitors by being inconsiderate of their
experience with your site.

Deciding which devices to target requires taking a composite look at a variety
of different metrics: There is no one stat to rule them all and bind them.

CR Tip
Want the best of both
worlds? Consider
using server-side
detection to swap be-
tween the JavaScript
and image beacon
methods of analytics.
We’ll talk more about
server-side detection
in Chapter 8, “RESS.”

Chapter 5 • planning 135

ptg8274462

Tom Maslen
Small Phone, big exPeCtationS

Tom Maslen is a senior web developer working in the BBC News web
development team, leading the clientside development of m.bbc.co.uk/news.
Having relaunched the mobile version of BBC News, creating a modern
responsive experience for all types of mobiles and tablets, his team is now
working to move the desktop BBC News experience onto the responsive
code base. Maslen’s a JavaScript specialist with a strong focus on browser
performance and accessibility in standards-compatible web pages. Outside
of work Maslen keeps guinea pigs, is Skyrim’s most deadly archer, and is a
long suffering supporter of Tottenham Hotspur Soccerball Club.

Small Phone, big exPeCtationS

Mobile is now a part of people’s everyday
lives, and the rapid increase in smartphone
ownership is changing how users access BBC
News online. Until recently, we had a low-end
mobile site for low-end devices and a desk-
top site for high-end browsers. But we found
that more and more users were accessing our
desktop site via their smartphones—clearly
these users wanted a better experience than
the mobile site was offering.

It was also clear that mobile users wanted—
and could deal with—more information on
the screen than we believed they did, even
though the desktop site required lots of
pinching and zooming to navigate on a
touchscreen device.

One approach to fulfilling users’ needs would
have been to create a unique web app for
every possible combination of device screen,
interaction type, connection speed, and
processor strength. Jakob Nielsen was right
when he asserted that users on different
devices have different needs.2 But in practice,
implementing this strategy would have been

2 Jakob Nielsen, “Mobile Site vs. Full Site” at www.useit.
com/alertbox/mobile-vs-full-sites.html

impossibly expensive; even Google admitted
that it couldn’t afford to do this.3

We didn’t accept Nielsen’s view that mobile
and desktop require separate designs. Using
responsive web design, we knew we could
create a solution that provided a base experi-
ence to less capable browsers, with added
layers of sophistication for more modern
browsers depending on the abilities of the
device and screen size.

Any responsive experience needed to be at
least comparable in quality to what users had
come to expect from the native BBC News
app on their phones. This meant loading
pages quickly and using touch gestures and
animations in a modern manner. To test this
idea, we started prototyping a responsive
approach in the spring of 2011.

In addition to creating a modern experi-
ence for smartphones, we were keen not to
alienate users with low-end mobile phones.
Although in the West smartphones have very
high market penetration, there are many mar-
kets around the world where low-end phones
are still dominant.

3 Vic Gundotra, VP of engineering at Google,
slide 35 from www.slideshare.net/commuterjoy/
responsive-design-bbccouk-8687366

ImplementInG responsIve desIGn136

www.useit.com/alertbox/mobile-vs-full-sites.html
www.useit.com/alertbox/mobile-vs-full-sites.html
www.slideshare.net/commuterjoy/responsive-design-bbccouk-8687366
www.slideshare.net/commuterjoy/responsive-design-bbccouk-8687366

ptg8274462

With the prototype, we proved that a respon-
sive experience could cater to low-end devices’
need for simple content delivered very effi-
ciently, while also enhancing this base experi-
ence for smartphones. The prototype made
extensive use of feature detection to test the
capabilities of the client device before deciding
whether to enhance the core experience or not.

about the mobile-only
reSPonSive webSite

In March 2012 we relaunched our mobile
product. While targeting only mobile phones
initially, we built the new site using respon-
sive design principles with the idea that we
would eventually use this code base to deliver
the news to all users on mobile devices, tab-
lets, and desktop computers.4

Having two code bases—one for desktop and
another for everything else—doesn’t sound very
responsive, and that’s because it isn’t. Unfortu-
nately much of the content on the BBC News
website doesn’t work on small screens. The
BBC News development team is spending the
next year changing the workflow that produces
these different kinds of content into a format
that will work with responsive web design.

For example, the work that comes out of the
BBC News Specials team is very graphic-oriented.
Interactive designers work with journalists to
produce really great content like “Can you build
a human body?”5 However, in its current state,
that page doesn’t work on a small screen.

We are actively working to resolve these
issues, but until we do there will continue to
be a need for the legacy desktop product.

4 BBC News Mobile site at http://m.bbc.co.uk/news
5 “Can you build a human body” at www.bbc.co.uk/news/

health-17235058

reSPonding to FeedbaCk

When we relaunched the mobile site, the
audience feedback, as expected, was mixed.
Smartphone users overall were positive about
the new design, while some users on older
handsets did not like the new layout.

The immediate audience analytics feedback
was also interesting. Our user numbers were
stable but page views were down, showing
that users were viewing fewer pages per visit.
We were expecting this to some extent. Our
new homepage offers more information than
the previous. While traffic for the home-
page changed only slightly, the number of
people visiting the other sections on the site
dropped. We have responded by prioritizing
some navigation improvements, which we
released within a month of launch, and traf-
fic to section pages, such as Technology and
Business, has now risen.

Users of devices with a landscape display
pointed out that the page design, which has
a large image that stretches across the width
of the page at the top of the screen, was too
large. We are working in fortnightly iterations
and after launch we added an additional
breakpoint into the design. For devices with
a width between 480px and 640px, a media
query for landscape orientation was added.
This changed the image so it was set to 50%
of the width and floated left, with the title
text wrapping next to it.

As more content is released onto the respon-
sive code base, we expect usage to rival that
of the desktop site. As more people access
the Internet with more types of devices,
the differences between the “mobile Inter-
net” and the “Internet” will disappear, and
responsive web design will become the indus-
try standard.

Chapter 5 • planning 137

http://m.bbc.co.uk/news
www.bbc.co.uk/news/health-17235058
www.bbc.co.uk/news/health-17235058

ptg8274462

Jason Grigsby’s blog post “A ‘Comprehensive’ Guide to Mobile Statistics”6

is an excellent resource for anyone trying to figure out which statistics to pay
attention to. While the post is targeted at mobile statistics, the advice can easily
extend to planning a responsive project as well. For web developers, Grigsby
recommends paying attention to three metrics in particular:

•	 Mobile Web Metrics

Mobile web metrics tell you which devices and browsers are being used
to access the Web. This is an incredibly important metric. If 5 million
people own the same type of device, but no one uses it to browse the Web,
then you have to question whether it makes sense to optimize for that
device—even with its high popularity.

•	 Demographic surveys

Demographic surveys help you to identify how people use different
devices. People of different ages, backgrounds, and income levels may use
devices in very different ways. Understanding their behavior ensures that
your site will not only work on their device, but also fit your target audi-
ence’s needs.

•	 Installed base market share

Stats about installed base market share look at how many devices are
being used—not just sold. It’s important to pair this information with the
information provided by mobile web metrics and demographic surveys.
Try to find that sweet spot where the installed base is high within your
specific target market.

Since a responsive approach is not just about trying to meet the needs of mo-
bile users, you need to give equal attention to these same metrics across the
many other kinds of devices that sport a web browser. You can find this data
through any number of third-party sources.

6 A “Comprehensive” Guide to Mobile Statistics at www.cloudfour.com/
a-comprehensive-guide-to-mobile-statistics/

ImplementInG responsIve desIGn138

www.cloudfour.com/a-comprehensive-guide-to-mobile-statistics/
www.cloudfour.com/a-comprehensive-guide-to-mobile-statistics/

ptg8274462

Skewed market share statistics
Market share stats can be skewed for a number of reasons. The accuracy of the
collection method is the primary issue, but the way a specific platform behaves
can also cause problems. Consider the BlackBerry. Web traffic from BlackBerry
devices is routed through RIM’s proxy servers, which happen to be in Canada.
As a result, when you look at the IP address, it will appear as though the visitor
is coming from Canada. This results in the US market share of BlackBerry web
traffic often being underreported.

Consider your content
We’ve all been there. You’re told to design a site, or worse yet, to start creating
the markup and CSS without knowing what the actual content will be. For the
majority of sites on the Web, content is the backbone. It’s what brings people to
a site in the first place. Isn’t it amazing then that, for so long, it’s been treated as
an afterthought for most projects?

From a designer’s point of view, how can you design without being familiar
with the content? Design isn’t about choosing pretty colors and rounded cor-
ners. Design adds meaning. It helps to tell the story the content is trying to
relate. It’s awfully hard to tell a story you don’t know.

Of course, you can’t wait until all the content is final before beginning layout and
related tasks. Try to do that and you’re doomed to failure. Content is an ongoing
job, one that must be considered carefully throughout the lifespan of the project.
Instead of having all the content in place before starting, focus on understanding
the types of content you need to support and where that content needs to go.

Designers and developers should be kept informed all along, otherwise you
end up needing to restructure the markup or rearrange the design to accommo-
date some chunk of content you didn’t know was coming. And if you thought
that was inconvenient in the world of the desktop, read on.

Understanding the structure and hierarchy of your content is incredibly im-
portant in a responsive site. As you adjust the design for different resolutions,
simply reducing the number of columns for viewing on smaller screens is not
enough. Often you’ll have to decide whether or not to change the way the
content is supposed to display.

Chapter 5 • planning 139

ptg8274462

For example, for a news site on a large screen, it may make sense to show the
title, description, and image of the 10 most recent articles. As the screen gets
smaller, it might make sense to display only the last five posts. At its smallest
size, it might serve the design best if those five were instead displayed as an
unordered list.

A firm understanding of the types and structure of the content that will be
displayed on a page makes these kinds of decisions easier. As you adjust the de-
sign, this knowledge will help you determine what content should be displayed,
what content can be tucked away, and what content should take priority.

At this stage in the process, you should be answering questions like:

•	 Who is the intended audience?

•	 What content is already available?

•	 How can existing content be simplified and condensed?

•	 What is the key message?

•	 Is there any content that does not support the key message?

•	 What is the hierarchy of the content?

Two deliverables in particular can help you answer these questions: the content
audit and page tables.

Content audit
At the very least, you should know what content you have now. A content audit
accomplishes that. The content audit is an assessment, or inventory, of all the
existing content on a website. Conducting a content audit serves many pur-
poses. The audit reveals information about the structure, location, and main-
tenance of each page of content. It can also reveal the gaps in your content:
what’s missing that should be added going forward. Finally, a content audit
serves as an excellent aid in content migration. It provides a roadmap from the
old site to the new one, eliminating a lot of the guesswork that is often involved
in the process of migrating a site to a newer design or a different CMS.

To conduct an audit, you go page by page through your site, recording informa-
tion about each piece of content in a spreadsheet. This spreadsheet becomes a
resource you can turn to when you need to remember who maintains a specific
page, or where certain content resides.

ImplementInG responsIve desIGn140

ptg8274462

Henny Swan
reSPonSive deSign and aCCeSSibility

Swan is a UK-based web accessibility specialist who focuses on video on
demand and mobile. She currently works for the BBC on iPlayer and is
writing mobile accessibility standards and guidelines. She can be found on
Twitter as @iheni and at her blog, www.iheni.com.

Building a responsive site is probably the
most efficient way to make content accessible
to diverse users. A single code base with good
structure, alternatives, labels, and editorial—
built with respect for the principles of
progressive enhancement—can go a long way
toward ensuring cross-device accessibility.
But it’s not a silver bullet. What works well on
a desktop may introduce issues when viewed
on a tablet or mobile, so it’s important to
understand where the breakpoints are, that
is, where accessibility breaks depending
on the device.

An essential ingredient of accessible sites is
structure. Correct use of headings, WAI-ARIA
(Web Accessibility Initiative-Accessible Rich
Internet Applications) landmarks, paragraphs
of text, and lists group related information
in a way that can be understood by assistive
technologies such as screen readers and
voice input software, and provides navigation
within a page. Content that’s made up of
five H2s with text paragraphs under them on
a desktop might be reduced to a list of five
links on a mobile device. Main navigation
that comprises six links on desktop might

pack away into a single drop-down menu
on mobile. This reduction for mobile makes
coding the five headings as H2s redundant, as
they’re now a list. Mobile has also engineered
itself out of needing a navigation landmark.
In fact, keeping the H2s and landmarks in
this instance could introduce a degree of
verbosity and clutter for screen reader users.

While we often concern ourselves with how
well WAI-ARIA or HTML5 is supported across
devices, there are breakpoints for HTML 4.
Coding techniques we rely on for desktop
may not be supported on mobile. Using
tabindex=”-1” around repeated links works
fine on desktop, but is not supported on
mobile. Hover states, title, abbr, and span
also suffer.

Despite the breakpoints, responsive design
remains the most efficient way to include
diverse users. Smart use of media queries
should help reflow content in a way that’s
understandable regardless of the user’s
ability, how content is accessed, or what
the content is viewed on.

Chapter 5 • planning 141

www.iheni.com

ptg8274462

There are many templates out there to get you started, but my favorite was
first mentioned in an article by Jeffrey Veen way back in 2002.7 The template
(pictured in Figure 5.3) is very simple, you won’t get caught up in bells and
whistles. The template includes columns for:

•	 Page ID: A unique identifer for the page.

•	 Page Name: The title of the page.

•	 Link: The url where the page resides.

•	 Document type: The template the page uses.

•	 Topics, keywords: The topics the page is about and the keywords
to be used.

•	 Owner/Maintainer: Who is responsible for the content on the page.

•	 ROT: Redundant, out of date, or trivial. Indicates if the page should
be removed for the new site.

•	 Notes: Any general commentary about the page. This could be broken
images, HTML problems, or just reminders for later.

By going through your content with a fine-tooth comb, you also become aware
of the quality of different content on the site. This can help you make decisions
about prioritization, and in some cases, even help you determine whether a
page could be condensed or removed completely. If your content isn’t contrib-
uting to your primary message or providing value for your visitors, then what
is it doing on your site in the first place?

For responsive projects, a content audit can help to highlight the similarities
between different pages. This helps you to determine your content types as
well as determine the rules for how each content type needs to be adjusted
as the site adapts to different resolutions.

7 “Doing a Content Inventory (Or, A Mind-Numbingly Detailed Odyssey Through Your Web Site)” at
www.adaptivepath.com/ideas/doing-content-inventory

Figure 5.3 A content
audit details the
structure, location
and maintenance
considerations of
content across your
site. You may find
that you need addi-
tional columns, or
fewer, depending on
your project.

ImplementInG responsIve desIGn142

www.adaptivepath.com/ideas/doing-content-inventory

ptg8274462

Page tables
Once you know what content you have, it’s time to take a page-by-page look
at how to structure it.

Wireframes can help with this to some extent, but typically they only show
a small selection of pages within a site. Also, they offer no guidance as to how
content will be maintained or what the key message is for each page. To over-
come this gap, we need to introduce another kind of deliverable: the page table.

Page tables, sometimes referred to as content templates, offer a detailed explo-
ration of content on a page-by-page basis. A page table contains information
about what content is included on a page, what the key message is, and how the
content will be maintained. You can see an example of what a page table might
look like in Figure 5.4.

Figure 5.4 Page tables detail
the structure and key goals
for each page, helping to
guide decisions about how
to lay that content out at
different resolutions.

Chapter 5 • planning 143

ptg8274462

Notice that the page table is very low fidelity. Keeping the page table low fidel-
ity ensures that no one will be confused about its permanence. It also means
that these page tables can be created and modified very quickly.

Page tables have the added benefit of making it easier to get needed content
from stakeholders and clients as they know exactly what kind of content needs
to be there and what it needs to communicate. Having the content mapped
out in this way helps to keep everyone on the same page, as well as hold people
accountable for their role in the process.

Arming yourself with information about the hierarchy of content on a page is
essential—particularly for a responsive approach. As you adjust the layout of
your site from one device to the next, keep that hierarchy in mind.

There are more steps you can take to ensure that your content is solid. We’ll
come back to this topic in Chapter 7, “Responsive Content,” but for detailed
information about content, check out Content Strategy for the Web by Kristina
Halvorson and The Elements of Content Strategy by Erin Kissane.

Consider where you’re going
Armed with knowledge about your audience and your content, you can start
to consider where to present your content. While it makes sense to make your
website accessible on as many devices as possible, you do need to decide which
specific platforms, devices, and capabilities you will optimize for. Site analytics
are invaluable for this.

It’s not about aiming for the lowest common denominator or serving only the
most capable devices. It’s about creating a site that can be experienced on a
large spectrum of devices in a way that best suits those devices’ capabilities
and form factors.

Optimized for some, accessible to many
As important as it is to identify the most common devices and platforms being
used to access your site, it’s just as important to remember that you can’t antici-
pate them all. You may not be able to optimize for all devices, but you should
attempt to support them by making your content accessible.

ImplementInG responsIve desIGn144

ptg8274462

Brad Frost, a developer with R/GA in New York, discussed the difference in
his blog post, “Support vs. Optimization”:8

It’s just about being more considerate and giving these people who want to inter-
act with your site a functional experience. That requires removing comfortable
assumptions about support and accounting for different use cases. There are ways
to support lesser platforms while still optimizing for the best of the best.

The way to do this is to very carefully apply the web stack with progressive
enhancement always in mind. The goal isn’t for every browser and device to
receive the exact same layout and experience—that’s simply not realistic. If an
older device has a few wrinkles in the experience, that’s all right. Just make sure
the experience is functional. This is the difference between optimizing for a
device and supporting a device.

Consider the cross-device
experience
How many devices do you use in any given day? If you’re like many people, the
answer is several—often for the same task. According to a study released by
Yahoo!, 59 percent of people sometimes visit a site on their mobile device and
then follow up on their desktop. 34 percent of people do the opposite: they
start on the PC and then follow up on their mobile device.9 As you start intro-
ducing all the other web-enabled devices a person owns, shifting becomes an
increasingly difficult reality to ignore.

When asked about experiences he liked, Madhava Enros of Mozilla said that
mobile usage is about a constellation of devices (Figure 5.5):10

Another that I really like is the Kindle. I love the hardware itself, but Amazon
really seems to have understood that mobile usage is about a constellation of de-
vices. It’s not just about the one phone you have. It’s being able to read at home
on your e-reader, but then read on your Android phone when you’re on the train,
or pick up your iPad when you’re elsewhere. That kind of consistency of getting
at your stuff across a bunch of devices is a really great insight.

8 “Support vs. Optimization” at http://bradfrostweb.com/blog/mobile/support-vs-optimization/
9 “Mobile Shopping Framework: The role of mobile devices in the shopping process” at http://advertising.

yahoo.com/article/the-role-of-mobile-devices-in-shopping-process.html
10 “On a small screen, user experience is everything” at http://radar.oreilly.com/2011/03/mobile-design-

user-experience.html

Chapter 5 • planning 145

http://bradfrostweb.com/blog/mobile/support-vs-optimization/
http://advertising.yahoo.com/article/the-role-of-mobile-devices-in-shopping-process.html
http://advertising.yahoo.com/article/the-role-of-mobile-devices-in-shopping-process.html
http://radar.oreilly.com/2011/03/mobile-designuser-experience.html
http://radar.oreilly.com/2011/03/mobile-designuser-experience.html

ptg8274462

Figure 5.5
The Kindle syncs your
notes, highlights, and
reading progress so
that you can pick up
where you left off
across a number of
different devices and
experiences.

ImplementInG responsIve desIGn146

ptg8274462

We can frame that in another way: web use is about a constellation of experi-
ences. Each individual experience a user has with your site should be able to
stand alone. However, those experiences also need to come together to create
a greater, unified experience.

This has many implications, but the most elementary is that of coherence: the
experience on one device should be familiar to someone who has first inter-
acted with your site on another. Navigation paths should be familiar and the
user should never feel as though some important piece of content isn’t there.

Keep the cross-device experience in mind from the beginning. Consider how
the experience must change based on dimensions and capabilities, and what
you can do to make sure it remains familiar from device to device.

It comes down to understanding that we can’t continue to view the Web as a mo-
bile web, desktop web, and so on. We need to understand, and embrace, that the
Web is just the Web. The devices we use to access it may vary, as may the context.
As a result, the design and even some of the content may vary as well. In the end,
however, it’s still one Web—and users will expect that they can interact with it
that way, regardless of what device they may be using at the time.

Prepare your test bed
Of course, you’ll need to test all your hard work, starting early on with collab-
orative design briefs (discussed in the following chapter). This is the part where
everyone starts sweating buckets. How on Earth do you test across so many
browsers and devices without taking out a second mortgage?

First, remember the difference between optimization and support. You can’t
test your site on every device and browser—it’s just not possible. Identify your
key ones and focus on those.

For those devices and browsers you will be testing on, you have a few options:

•	 Actual devices

•	 Emulators

•	 Third-party services

Chapter 5 • planning 147

ptg8274462

Actual devices
The best way to test your site, hands down, is to test on real browsers running on
real devices. Testing on devices gives you the clearest picture of how your site will
be affected by considerations such as performance, network, form factor, and capa-
bilities. You just can’t get this kind of information by simply resizing your browser
window or testing on emulators. If you really want to see how it feels to use your site,
then you have to use it in real-world scenarios, just as your users would.

Get out of your office and away from your super high-speed Internet. Use a slower
Wi-Fi connection. Connect to a mobile network. Use your site while waiting at a
noisy bus stop. Visitors won’t always be browsing from the comfort of a chair and
with access to a high-speed network. You shouldn’t be testing as if they will.

Getting real with your testing is easily the best method. Unfortunately, there
are a lot of devices out there and they’re not exactly cheap. Getting your hands
on them is important, but doing so without breaking the bank is too. How do
you decide which devices to purchase?

The answer depends on your specific situation. In her post, “Strategies for
choosing testing devices”,11 Stephanie Rieger lists five criteria for determining
which devices to purchase for testing:

•	 Existing traffic

•	 Regional traffic and market

•	 Device-specific factors

•	 Project-specific factors

•	 Budget

It’s worth taking a closer look at these to see how they guide your decision.

exIstInG traffIC

Once again, site analytics prove their worth. The best starting point to deter-
mine what devices you may want to purchase is knowing what kind of devices
are accessing your site. Pay attention to the devices themselves, but also plat-
forms and versions. From this analysis, you should be able to come up with
a lengthy list of possibilities.

11 “Strategies for choosing testing devices” at http://stephanierieger.com/
strategies-for-choosing-test-devices/

ImplementInG responsIve desIGn148

http://stephanierieger.com/strategies-for-choosing-test-devices/
http://stephanierieger.com/strategies-for-choosing-test-devices/

ptg8274462
reGIonal traffIC and market

As with decisions about grouping and breakpoints, you can’t rely solely on
your own analytics, however. Make sure that self-fulfilling prophecies aren’t
obscuring your statistics. Find out what devices and platforms are dominant in
your area. Compare them to the devices you found in your own analytics to see
what’s missing and what overlaps.

devICe-speCIfIC faCtors

While it’s important to have a variety of platforms represented in your test bed,
that’s not enough. Make sure you use a variety of different form factors, sizes,
and capabilities. The same platform can run very differently on a high-end
device than it does on a mid-tier or lower-end device. The methods of input
can also have a large impact on how you should design your site (Figure 5.6).
Make sure these different features are represented.

projeCt-speCIfIC features

Consider the specific features your project requires or would benefit from. In
her post, Rieger uses geolocation as an example. If your site makes heavy use of
location services, then you’ll want to use devices capable of supporting geolo-
cation. You’ll also want a few that aren’t capable so you can test your fallback
options accordingly.

Figure 5.6 While
touch-enabled
screens are increas-
ingly popular, many
devices, including
many popular Black-
Berry phones, feature
trackballs or qwerty
keyboards for input.

Chapter 5 • planning 149

ptg8274462

BudGet

Unless you’re sitting on piles of money (and if you are, may I suggest buying
another 10 or so copies of this book), you’ll have a limited budget for building
your testing suite. Keep an eye out for used devices for sale cheap. Remember,
it’s OK to get an older model. Most visitors probably won’t be running the
latest and greatest device. Often, having a slightly older device is a much more
realistic representation of your audience.

Be sure to shop around. Phones and tablets aren’t cheap, but if you pay attention
to sites like Craigslist and eBay, you’ll find some fantastic deals on excellent test-
ing devices. Just be sure not to be too thrifty. It’s good to have those cheaper, older,
low-end models around, but they shouldn’t be the only ones you test on.

Don’t be afraid to make use of your local carrier stores. Walk into them, explain
what you’re doing, and you’ll be surprised at just how willing they can be to let
you test your site for a few minutes on their devices.

Finally, ask around your office. If you’ve got a group of people you’re comfortable
with, find out what kind of devices they own. We took a poll at our office of just
under 30 people and the diversity was pretty impressive. You may be surprised to
find the mobile test bed you have sitting right there in your office.

load up on Browsers

Armed with your array of testing devices, your next step will be to grab any and
every browser you can and load those devices up. Many of the devices will have
several browser options available. Get them all.

This applies to your desktop as well. Grab Safari, Chrome, Firefox, Internet
Explorer, and Opera and install them. Where you can, load up multiple ver-
sions so you’re not just testing on the latest and greatest browser versions.

Emulators
Emulators are far from perfect. They usually require a hefty SDK, so you need
lots of space to store them. They give you no sense of how it feels to interact
with your site on a real device. They’re essentially ports of the browser or oper-
ating system, which means they’re prone to errors and differences. Some bugs
that appear on an actual device look just fine on the emulator.

That being said, testing on an emulator is better than testing nothing at all.
If you can’t have a real device in hand, this may be your next best option.

CC Note
For an in-depth look
at some different em-
ulators, visit http://
www.mobilexweb.
com/emulators and
check out Maxi-
miliano Firtman’s

“Mobile Emulators
& Simulators: The
Ultimate Guide.”

ImplementInG responsIve desIGn150

http://www.mobilexweb.com/emulators
http://www.mobilexweb.com/emulators
http://www.mobilexweb.com/emulators

ptg8274462

Adobe Shadow
Having a large selection of testing devices is fantastic, but you still have
to go through and manually load your site on each of the devices to
see how it performs and displays. This is decidedly less fantastic. Enter
Adobe Shadow.

Adobe Shadow is an inspection and preview tool that aids testing on
actual devices. To use it, download the helper application onto your
computer and install the Chrome extension. Then, install the appropri-
ate Adobe Shadow on each device (at the time of writing, only Android
and iOS devices are supported).

With everything installed, you can then use the Adobe Shadow applica-
tion on the devices to connect to your computer (no wires necessary).
Once connected, the page open in Chrome will be displayed on all con-
nected test devices as well.

Here’s where the magic kicks in. Let’s say that you have ten different
devices all connected to your desktop through Adobe Shadow. If you
move to a different page in Google Chrome, each connected device will also
move to that url. This means you can walk through an entire site on your
desktop and all the devices that are connected will follow along, saving a
tremendous amount of testing time.

Among its many other impressive features are the ability to:

•	 take screenshots of any connected device

•	 take a screenshot of all connected devices at the same time through
the Chrome extension

•	 remotely inspect the HTML, CSS, and DOM structure of connected
devices

•	 control the cache on any connected device

Seemingly overnight, Shadow went from being released to being an
essential tool in the web developer’s toolbox.

Chapter 5 • planning 151

ptg8274462

Third-party services
Third-party services such as PerfectoMobile (www.perfectomobile.com) and
DeviceAnywhere (www.keynotedeviceanywhere.com) have many mobile
devices available and you can see how your site renders on them. The cost of
these services can really add up though, so be careful how often, and for how
long, you use them.

While third-party services are more accurate than emulators, the cost means
that they’ll typically be your last resort. If your budget allows for it, start with
real devices where possible, fill in the blanks with emulators, and fall back on
the third-party services only when needed.

wrapping it up
Responsive design is a powerful technique, there’s no doubt about that. It’s not
a silver bullet though. Getting the maximum value from your site takes a lot of
time and very careful consideration. You must integrate responsive design into
your planning for the project.

Study your analytics, but keep in mind that they have a way of lying. Consider
your content carefully. It needn’t be finalized before design and development
begins, but you should know the structure of it.

Consider the cross-device experience. People will be using different devices to
access your content. They will expect the experience to be familiar, yet opti-
mized for their device.

Finally, test your site on actual devices whenever possible. It can be a little intimi-
dating, but building your own test suite doesn’t have to break the bank. By taking
the time to determine which devices will benefit your project the most, and keep-
ing your eyes peeled for deals, you can slowly build a powerful suite of devices.

In the next chapter, we’ll look at how a responsive project affects the entire work-
flow, from the way teams work together to the way sites are designed and built.

ImplementInG responsIve desIGn152

www.perfectomobile.com
www.keynotedeviceanywhere.com

ptg8274462

Chapter 6

Design
WorkfloW
Our “age of anxiety” is, in great part,

the result of trying to do today’s job with
yesterday’s tools—with yesterday’s concepts.

—Marshall MCluhan

ptg8274462

When you toss a stone into water, it makes a splash that causes a series of ex-
panding ripples. While the point of impact is small, the effect is far-reaching.

If our modern work process is the water, then responsive design is the stone.
This one change sets in motion a series of ripples that affects everything about
the way we work with the Web.

Technology changes. It evolves, it matures. It becomes capable of perform-
ing new tasks. When this happens, we must learn to change as well. Our tools
and techniques, our thought processes—they must evolve as well in order to
keep up.

The impact of new technology on the design workflow is tremendous. It can
also be unsettling as we come to terms with the fact that so many of our current
practices may be flawed. Our workflow must become more flexible. We must
shed our old ways of working, and try to find a better way to manipulate this
incredible medium.

In this chapter, we’ll explore:

•	 The interactive nature of the Web and its impact on workflow

•	 The importance of thinking mobile first

•	 The benefits of designing in the browser

•	 Tools and techniques such as wireframes, sketches, and style guides

Your mileage may vary
Dan Brown has a great line in his book Communicating Design: “Anyone who
tells you the design process is absolute doesn’t make a living doing it.”1 The
design process is an art, not a science. There are very few rules involved. Ulti-
mately, each client, each project, each team works differently. You need to find
the process that works best for you and your project.

A number of different criteria factor into what that process entails: the size
of the team, the budget, the capabilities of the designers and developers, the
timeline—these all dictate what deliverables and steps are necessary for a
specific project.

1 Dan Brown, Communicating Design, Second Edition (New Riders, 2010)

IMpleMentIng respOnsIve DesIgn154

ptg8274462

Remember that the individual steps in the process are less important than
adhering to a few key concepts:

•	 The Web is interactive. Your tools and deliverables should reflect that.

•	 The process needs to be collaborative.

•	 It’s not about pages anymore. It’s about systems.

An interactive medium
We need to move away from working with the Web as if it were a static medium.
It’s not. It’s flexible. It’s unpredictable. Settling into a rigid workflow with rigid,
static deliverables doesn’t help us maximize on this potential. It limits us by
applying arbitrary constraints where there are none.

To date, our approach to designing for the Web has closely resembled designing
for print. We use many of the same tools for designing a website as we would
for designing a poster. But print isn’t an interactive medium; the Web is. People
don’t just look at a website, they interact with it. They click. They hover. They
tap. The Web is a living, breathing canvas that they can manipulate and bend to
their will. The Web is much closer to being software than it is to being print.

Our tools, techniques, and deliverables should better reflect the Web’s
dynamic nature.

Collaboration
For most of the Web’s existence, the workflow has been mostly linear. The de-
signer creates the design, and once approved, passes it off in the form of a static
mock-up or two to the developer to build. Unfortunately, a lot of information
can get lost in the exchange. Things like error messages, hover states, open and
closed navigation—these are the components that sometimes can be over-
looked in the handoff.

With a responsive project, because you’re focusing on serving such a wide
variety of different devices, the workflow necessarily becomes much more
indirect. Not only must you be aware of the kind of interactions people can
have with the site, but you must also consider how the site will respond to dif-
ferent sizes, capabilities, and methods of input. You can’t expect the designer
to anticipate everything that will come up, and you can’t expect the developer

Chapter 6 • Design WorkfloW 155

ptg8274462

to accommodate each interaction in way that is 100 percent in sync with the
designer’s original vision. A higher degree of collaboration is necessary.

Ethan Marcotte discusses this in his book Responsive Web Design:2

The responsive projects I’ve worked on have had a lot of success combining
design and development into one hybrid phase, bringing the two teams into one
highly collaborative group.

This hybrid approach makes much more sense. It provides developers and
designers alike with opportunities to discuss how pages should behave at differ-
ent sizes and when interacted with. Together, they can discover the interactions
and components that may be less obvious, and make decisions about how to
handle those different devices and input methods.

Collaboration ensures that fewer things slip through the cracks. Especially
when designing in static programs, it’s easy for a designer to envision one ideal
scenario, with a flow that assumes the best possible support and functionality.
If the designer and developer work closely together throughout the design pro-
cess, the developer can point out other possible scenarios: What happens when
touch is supported? What happens if there’s no geolocation? Working together,
these scenarios can be designed for as well.

This same benefit becomes apparent during development. The developer may
not be fully aware of the designer’s vision. She may not understand why certain
decisions were made about flow and visual aesthetics. With a designer working
alongside her, that original vision can be maintained. When a scenario crops
up that wasn’t originally planned for in the earliest designs, the designer can
work with the developer to create a solution that maintains the integrity of
the design.

The collaborative workflow can also lead to innovative solutions. Like rubbing
two stones together, the friction provided by two different perspectives can
spark an idea. We solve problems based on our prior experiences, which means
that our solutions are limited by what we know. When you bring people to-
gether, their collective range of experiences expands and so does the likelihood
of finding a high-quality solution to any problems that arise.

Successfully adopting a collaborative workflow requires communication, itera-
tion, and respect.

2 Ethan Marcotte, Responsive Web Design (A Book Apart, 2011)

IMpleMentIng respOnsIve DesIgn156

ptg8274462

COMMunICatIOn

From the very first kick-off meetings, designers and developers should both be
involved. By involving designers and developers early on, you create the oppor-
tunity for much stronger results from both sides. Designers can make sure their
original vision is coherent from page to page and interaction to interaction.
Developers can identify potential concerns before they grow into serious issues.

Instead of a simple hand-off, a more collaborative workflow thrives on design
briefs: meetings involving both designers and developers.

During these design briefs, the site should be viewed on as many different
target devices as possible. This will alert you to any faults in the design and clue
you into additional adjustments you can make to optimize the experience for
a given device.

During these briefs, people on both sides of the table can answer questions
such as:

•	 Are the touchpoints on a touch screen device large enough?

•	 At what sizes does the design start to show stretch marks?

•	 How cumbersome is it to interact with the dynamic elements?

•	 Would another breakpoint improve the design?

•	 Can the experience be enhanced for a given device?

•	 What minor adjustments could help support a broader range of devices?

IteratIOn

As these questions are answered, you iterate. You tweak the design to accom-
modate changes, then rinse and repeat. Ideally, you’re taking small steps—not
making big changes with each iteration. This makes it much easier to fine-tune
the experience and avoid getting too caught up in one large, overarching view
of the experience.

This might sound time-consuming. It is. It’s also an incredibly important step
toward ensuring that the end product will be an enjoyable experience for the
people who use it.

It’s about immersing yourself in the medium you’re creating for. We have a
limited knowledge of the specific and unique quirks of the cornucopia of
devices. Trying to anticipate layout issues as the site scales and is interacted
with is a losing proposition.

Chapter 6 • Design WorkfloW 157

ptg8274462

respeCt

Of course, this whole process falls apart if there’s a lack of mutual respect be-
tween the designers and developers working on a project.

Solid communication helps to some extent. By working so closely with one
another, designers and developers alike will gain a deeper respect and better
understanding of the challenges they each face.

A little knowledge goes a long way. Respect, as it turns out, is very difficult to
give to something you don’t understand. If you’re a designer, taking the time to
dabble in some programming gives you a deeper understanding of the develop-
er’s work. Likewise, as a developer, exploring design concepts helps you realize
that design is much more than just pretty colors and fonts.

Collaboration With the Client

Collaboration shouldn’t stop internally; it should extend to your interac-
tions with the client as well. Get her involved early on, and make her a part
of the process throughout. The typical waterfall approach—where designers
and developers come up with a solution, then hand it off to the client for ap-
proval—can result in an “us versus them” mentality. It can turn into a game
of one-upmanship. The client feels the need to request changes to get herself
involved. The designers and developers feel the need to defend their decisions
and combat the changes the client tries to interject.

If you keep the client involved throughout the process, however, then it be-
comes a team effort. The wall between the client and the design team gets torn
down. Both sides have their voices heard, and every solution is arrived at with
input from each.

Better collaboration with the client is also an incredible educational experience
for both parties. The design team learns about the unique requirements and
constraints that the client has to deal with, things like legacy systems and com-
pany politics. The client gets to see how decisions about design and support
are arrived at. If the client is involved in those design briefings, she gets to see
how the design of a site necessarily varies from device to device and browser
to browser.

IMpleMentIng respOnsIve DesIgn158

ptg8274462

Brad Frost
selling responsive Design

Brad Frost is a mobile web strategist and front-end designer at R/GA in
New York City. He is the creator of Mobile Web Best Practices, a resource
site aimed at helping people create great mobile and responsive web expe-
riences. He is also the curator of WTF Mobile Web, which teaches by
example what not to do when working with the mobile web. He is passion-
ate about mobile and likes to tweet, blog, and speak about it.

It’s essential to get the client on board with
responsive design up front because going
down the responsive path affects the process,
timing, budget, and, ultimately, the final prod-
uct. It’s important to be honest with clients
and show them the challenges as well as the
opportunities of responsive design. Educated
clients are more willing to invest in the project
and ensure that it’s done right. The rest of
the process runs relatively smoothly when you
convince the real decision makers.

I’ve found that showing, rather than telling,
does absolute wonders for client education. In
a few pictures I can demonstrate that the web
landscape is increasingly complex and that
the client needs to address that fact. Examples
can describe responsive design in ways that
words really can’t. One of my favorite things
to do is to make a page or two of the client’s
existing site responsive. While it’s certainly not
how you’d want to build the new site, it helps
the client understand the concept of adaptive
layouts. Clients often have a hard time think-
ing outside the box (“but we’re not a newspa-
per!”), so that exercise keeps the focus on the
responsive opportunities.

A few factors play a part in what pages to
choose. One is ease of implementation.

Obviously you wouldn’t want to pick the
most challenging page on the site for a basic
responsive proof of concept. Pages with a
higher percentage of mobile views are good
candidates. I also like to show that respon-
sive is more than just layout adjustments, so
I use pages that have good opportunities for
a simple swipe carousel to get a little sexy on
them. A lot of it comes down to the art of
presentation, which means showing it on real
devices, but as I learned, you should lead with
the squishy window resize so the client gets the
concept before viewing it on real devices.

Sometimes, a responsive approach isn’t the
right one. Certain projects need camera API
access. Certain microsites have a shelf life
of only a couple weeks. Certain clients have
products that cater to millionaires so they can
afford to build a customized iPhone app.

However, even if a project isn’t responsive,
I always ask the important questions about
mobile compatibility: How are those videos
going to be handled for mobile devices?
What’s the page size? What if a device
doesn’t support this font?

At the very least you want to have mobile
consideration, and, at most, a full-blown
optimized and adaptive experience.

Chapter 6 • Design WorkfloW 159

ptg8274462

Thinking in systems
Think back for a second to Chapter 5, “Planning,” and our discussion about
the cross-device experience. Coherence is one of the primary principles that
emerge from that discussion. A site needs consistency—not just page to page,
but device to device.

Achieving coherence requires us to stop thinking about the site on a page-
by-page basis and start thinking in terms of systems and their components:
headers, footers, navigation systems, and so on. Thinking about the individual
components decouples us from the page, forcing us to consider how these
components work in relation to the entire site experience.

This has always been important, but never more so than today. Sites have to
work on more devices and browsers than ever before. Considering how the
individual components of a site work in different environments, and then how
those components come together in a unified way to create a broader experi-
ence, is essential to the success of any responsive project.

In addition, this way of approaching design helps to improve consistency and
productivity. There’s no need to reinvent solutions over and over: as you design,
you are creating a library of them that you can reuse whenever it makes sense.

Thinking mobile first
As we’ve discussed earlier, increasing fragmentation has turned our typical
processes on their heads. The rallying cry of the day is to start by designing the
mobile experience first.

The concept of mobile first was spearheaded by Luke Wroblewski. In his origi-
nal post on the topic, he cited three reasons why the mobile experience should
be the first one created:3

•	 Mobile is exploding

“Building mobile first ensures companies have an experience available to
this extremely fast-growing user base widely considered to be the next big
computing platform.”

3 “Mobile First” at www.lukew.com/ff/entry.asp?933

IMpleMentIng respOnsIve DesIgn160

www.lukew.com/ff/entry.asp?933

ptg8274462

•	 Mobile forces you to focus

“Mobile devices require software development teams to focus on only
the most important data and actions in an application. There simply isn’t
room in a 320 by 480 pixel screen for extraneous, unnecessary elements.
You have to prioritize.”

•	 Mobile extends your capabilities

“Building mobile first allows teams to utilize this full palette of capabilities
to create rich context-aware applications instead of limiting themselves to
an increasingly dated set of capabilities.”

Let’s explore each of these reasons a little more closely.

Mobile is exploding
Mobile devices are increasing rapidly both in quantity and quality. One report
estimates that by the year 2020, there will be 12 billion mobile subscriptions.4

With the proliferation of devices come more and more people who access the In-
ternet only via their mobile device. No laptop, no desktop: their only interaction
with the Internet is through that little device they carry in their pocket. In the
United States, 25 percent of mobile users access the internet only through their
mobile device. In the United Kingdom, that number is 22 percent.5

If those numbers seem high, they shouldn’t. Compared to the rest of the world,
25 percent is actually pretty low. Egypt, for example, leads the way with 70
percent of mobile users being mobile-only (Figure 6.1).

Africa is another very interesting example. There, more people will soon have
access to a mobile device than to electricity.6 This means that to charge these
devices they’re using things like car batteries.

4 “GSMA Announces That the Proliferation of Connected Devices Will Create a US$1.2 Trillion
Revenue Opportunity for Mobile Operators by 2020” at www.prnewswire.com/news-releases/
gsma-announces-that-the-proliferation-of-connected-devices-will-create-a-us12-trillion-revenue-
opportunity-for-mobile-operators-by-2020-131484733.html

5 “Global mobile statistics 2012: all quality mobile marketing research, mobile Web stats, subscribers, ad
revenue, usage, trends…” at http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats

6 “The Significance of Mobile Web in Africa and its Future” at www.wfs.org/content/
significance-mobile-web-africa-and-its-future

Chapter 6 • Design WorkfloW 161

www.prnewswire.com/news-releases/gsma-announces-that-the-proliferation-of-connected-devices-will-create-a-us12-trillion-revenue-opportunity-for-mobile-operators-by-2020-131484733.html
www.prnewswire.com/news-releases/gsma-announces-that-the-proliferation-of-connected-devices-will-create-a-us12-trillion-revenue-opportunity-for-mobile-operators-by-2020-131484733.html
www.prnewswire.com/news-releases/gsma-announces-that-the-proliferation-of-connected-devices-will-create-a-us12-trillion-revenue-opportunity-for-mobile-operators-by-2020-131484733.html
http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats
www.wfs.org/content/significance-mobile-web-africa-and-its-future
www.wfs.org/content/significance-mobile-web-africa-and-its-future

ptg8274462

0
10
20
30
40
50
60
70
80

Eg
yp

t

Percentage of Mobile Web Users Who Never,
or Infrequently, Use the Desktop Web

In
di

a

So
ut

h
A

ft
ic

a

G
ha

na

K
en

ya

N
ig

er
ia

In
do

ne
si

a

U
S

U
K

What’s really interesting about these numbers is the way this impacts how the
Web is perceived in these countries. It’s hard to fathom, but try to imagine what
it means to be living in a place where your neighbor is more likely to have a
mobile than to have electricity. Think about how your perception of web use
would be different if you and 7 of your 10 friends always viewed the Internet
through the small screen on your phone.

The number of devices, and the number of people using them to access the
Web, will continue to grow—rapidly. It makes sense to consider the mobile
platform, already the predominant one in some countries, first.

Mobile forces you to focus
Designing for mobile first also helps to focus the discussion on the content that
matters most for your site. We’ve all worked at companies, or for clients, where
everyone in the company had a different idea of what should go on the home
page. Of course, every department wants its own material to be up front and
center. This leads to crowded designs. We cram our sites full of tabs and col-
lapsible elements and leave very little room to breathe (Figure 6.2).

figure 6.1
The percentage of
mobile web users
who only use the
mobile web, by
country.

IMpleMentIng respOnsIve DesIgn162

ptg8274462

On a mobile device, it’s much more difficult to get away with this. These devices
typically have smaller screens. This means there’s less room to cram a bunch
of content into. As a result, you’re forced to home in on the content that’s most
important to your visitors. What features and functionality are vital to your site?
Which are simply nice to have? Better yet, which don’t belong on your page at all?

The discussion about what content matters and what doesn’t often spills over
into your larger screen layout as well. If you’ve determined that a chunk of con-
tent isn’t important enough to be on the home screen for a mobile display, is it
really important enough to be there on a larger screen?

figure 6.2
The article (the
highlighted por-
tion) is the content
that matters to the
visitor, but it’s buried
amidst a pile of
distractions.

RR Tip
Simple and Usable,
by Giles Colborne,
is an excellent book
for anyone trying
to figure out how to
simplify a site to its
core and reduce clut-
ter in the process.

Chapter 6 • Design WorkfloW 163

ptg8274462

Mobile extends your capabilities
Today, many businesses approach their mobile sites as limited, stripped-down
versions of their desktop sites. Perhaps it’s because of the limiting characteris-
tics we historically assign to the label “mobile.” Or perhaps it’s because we’ve
resisted the idea that great things come in small packages. Whatever the rea-
son, many seem intent on simplifying the mobile experience to an extent that
makes it feel crippled next to the desktop site, or as some call it, the “full site.”

This is an inherently flawed way of thinking, and in practice, makes very little sense.
As Josh Clark, a mobile consultant, says: “Saying mobile design should have less is
like saying paperbacks have smaller pages, so we should remove chapters.”7

The truth is that mobile devices aren’t limited alternatives to their larger breth-
ren; they’re often far more capable. They can make heavy use of geolocation to
optimize the experience. They can switch layouts depending on the way they’re
held. Many of them support a rich, multi-touch interface. These devices are
very often capable of providing a much richer user experience than their desk-
top counterparts.

Devices are also loaded with an ever-increasing number of sensors. While
many are not yet accessible from the browser, keep an eye on the future and
consider how these sensors can be used to create an enhanced experience.
Mobile devices shouldn’t be given a dumbed-down version of your site; they’re
a gateway to a far more personal experience than has ever been possible before.

What all this adds up to is this: It makes sense to consider the mobile experi-
ence first in your design process. There’s a transition period of getting used to
mobile-first, but once you do, you’ll find it helps you to focus on the key com-
ponents of your site and saves you time.

7 “Josh Clark debunks the 7 Myths of Mobile Web Design” at The Next Web (TNW)
http://thenextweb.com/dd/2011/11/07/josh-clark-debunks-the-7-myths-of-mobile-web-design/

IMpleMentIng respOnsIve DesIgn164

http://thenextweb.com/dd/2011/11/07/josh-clark-debunks-the-7-myths-of-mobile-web-design/

ptg8274462

The tools
The tools presented here are ones that I’ve found to be valuable in my own pro-
cess. Not every project includes them all. Some projects include more. These
are the core deliverables, the ones I keep coming back to most often. As noted
earlier, your mileage may vary from project to project. The process is not rigid.
You should use the right tool for the right job.

Wireframes
When you create a design, you don’t want to get caught up in the little details
too early on. If the first thing you create is a high-fidelity mock-up or prototype,
it will be very difficult to see past the colors and typography through to the
actual structure of the design.

Instead, it’s helpful to start by creating low-fidelity wireframes. A wireframe is
a diagram that demonstrates what content will appear on a page. Wireframes
typically do not include color, font choice, or images. The purpose of a wire-
frame is not to demonstrate the site layout, but to help determine the page
structure, including what kinds of content will be displayed and the priority
of that content.

Keep your wireframes as simple as possible. The higher the fidelity of your
wireframe, the more resistance you’ll run into. Too many details and people
start to get distracted. At this stage, you don’t want to focus on fonts or colors—
you want to zero in on the elements of a page and their structure. The lower the
fidelity of the wireframe, the easier it is to focus on the page structure, hierarchy,
and behavior.

Stephen Hay likes to use what he calls “content reference wireframes.” A con-
tent reference wireframe is a low-fidelity document intended to show roughly
where the different types of content will reside on a page. Using the content
audit and page tables (discussed in Chapter 5, “Planning”), you know the
content to be included on a page and its general hierarchy. Using this, you can
create a content reference wireframe showing where that content will reside
(Figure 6.3).

Chapter 6 • Design WorkfloW 165

ptg8274462

1. NAvIgATION

2. LOgO

3. ArTICLE

4. rELATEd HEAdLINES

5. Ad

6. TAgS

7. SOuNd BITES

8. MOrE IN SECTION

9. FOOTEr (rEPEAT NAv)

1

2

8

9

4

5

6

7

3

Because content reference wireframes are so low fidelity, you can create them
very quickly. In just a few minutes you can produce wireframes for several
different basic screen sizes to show to the client or stakeholders. And because
content reference wireframes are easy to create, you won’t be pulling your hair
out every time the client requests a change: with only a couple of minutes of
work, you’re all set.

start With sketChing

Whatever format you prefer for your final wireframes, you should start with
sketching. The power of sketching lies in quantity, not quality. Sketches can be
created very quickly, allowing you to rapidly work through a number of differ-
ent possibilities and different sizes (Figure 6.4). This is particularly important
for a responsive project, where you will want to sketch out the layout for a
number of different resolutions.

figure 6.3 Content
reference wireframes
demonstrate where
each chunk of con-
tent will reside on a
given page.

IMpleMentIng respOnsIve DesIgn166

ptg8274462

Sketches are also as low-fidelity as they come. If people see a sketch on a piece
of paper, they recognize that it is a rough idea. A sketch is very informal: its
rough lines imply that it shows creative thought in process, not a refined and
polished idea. This encourages more participation and conversation when
people see it, since they recognize that it’s still being worked on. The lack of
details helps you avoid tunnel vision and see the bigger picture.

After sketches have been created and reviewed, some designers will move to a
slightly higher-fidelity wireframe. One common next step is what Jason Santa
Maria termed the “Grey Box Method.”8

Using the Grey Box Method, your next step is to create a wireframe consisting
of, you guessed it, grey boxes to represent the different sections of content. This
is typically done using Adobe Illustrator, Photoshop, or any number of tools
specifically created with wireframing in mind.

Grey box wireframes have become so common that many stakeholders have
come to expect them. However, it’s at this point that we should consider

8 “Grey Box Methodology” at http://v3.jasonsantamaria.com/archive/2004/05/24/grey_box_method.php

figure 6.4 Sketching
allows you to quickly
work through many
ideas and scenarios.

Chapter 6 • Design WorkfloW 167

http://v3.jasonsantamaria.com/archive/2004/05/24/grey_box_method.php

ptg8274462

breaking away from our typical approach. Wireframes are very good for relating
a quick idea about the structure of a page, but they’re not good at doing much
else. Some people will go to great lengths to create high-fidelity wireframes, but
there’s only so much information they can convey. It’s about using the right
tool for the right job.

Instead of introducing grey boxes, consider moving from paper sketches to
something a bit more interactive.

Mock-ups
Part of maturing is letting go. You probably had a favorite toy or stuffed animal
when you were a kid, but at some point, you outgrew it.

It’s time to outgrow the desire for pixel-perfect control.

Sometimes, in order to support a maximum number of people, you need to be
willing to sacrifice perfection. We can attempt to create pixel-perfect designs
that reach only a subset of the potential audience, or we can accept the ebb and
flow. We can create beautiful sites, allowing for some imperfections, and pro-
vide a much larger audience with an enjoyable experience.

Imperfection is a good thing. Imperfections breed character and allow for mal-
leability. In fact, imperfect but flexible trumps perfect and inflexible just about
every time. Like Play-Doh, people want something they can customize and
make into their own.

The question “does a website have to look the same in every browser” has been
taunting our industry for years. Many have argued that it doesn’t have to. Yet
we’ve tried—hard.

Consider the elaborate lengths we’ve gone to in order to make our sites look as
identical as possible, regardless of the browser. Most of us have implemented a
rounded corners solution, back before vendor-prefixes let us serve them up to
most modern browsers. These convoluted solutions typically required several
extra divs and multiple images.

For a long time, bringing opacity in PNGs to Internet Explorer was another
point of agony. Since IE didn’t support 24-bit transparent PNGs, we created
endless numbers of third-party scripts to trick IE into displaying them correctly.

These solutions were hacks, costly ones. They added time to the development pro-
cess and weight to the pages. They added unneeded complexity to our projects.

IMpleMentIng respOnsIve DesIgn168

ptg8274462

The idea of creating pixel-perfect experiences is very tempting. That’s why so
many people get excited about what they can do with native iOS applications.
They have absolute control over the way their app is designed and laid out.

That same precision doesn’t exist on the Web. There are too many variables.
The user can zoom in or out of the page, altering the way the page appears. The
user may decide not to keep the browser fully maximized. Any number of dif-
ferent browsers and devices, each with its own capabilities and levels of sup-
port, may be used to access our sites.

The idea of a design that looks identical across browsers is a fallacy—and
potentially a harmful one.

Clients and stakeholders are often the ones speaking up the loudest when a design
doesn’t look the same in IE 6 as it does in the latest version of Google Chrome.
We can’t point fingers, however, because if we dig deep enough, we find that the
root of the problem may very well be one of our own practices: static mock-ups.

the trouble With statiC moCk-ups

The traditional approach for creating initial design mock-ups for a site has been to
use a graphics program like Adobe Photoshop or Fireworks. You churn out a static
mock-up, perhaps print it, and then show it to the client. Together, you review the
design and note any adjustments that should be made. Then it’s back to Photoshop.

Once you have the mock-up finalized and approved, you hand it off to your
front-end developers to start implementing the mock-up into HTML and CSS.

This feels comfortable. It’s tradition. It’s the norm. It’s also fundamentally flawed.

There’s no doubt that these graphics programs are powerful. They give you a
tremendous amount of tools and control. You can fine-tune the typography,
colors, borders, layout, and more. This makes them fantastic tools for image
editing, icon design or designing for print; it makes them a poor choice for
a nonstatic medium like the Web.

When you open Photoshop and create a new document, the first thing you
have to do is specify the file dimensions; at that point you’re already discon-
nected from the very medium you’re creating for. It’s no wonder we build
so many fixed-width sites.

There are lots of problems with static mock-ups. They provide a very limited
perspective of what the end result will look like. They can’t demonstrate how
a design will appear at different screen sizes. They don’t show what the page

Chapter 6 • Design WorkfloW 169

ptg8274462

looks like when it’s interacted with—the hover and focus states for example.
There’s no hint at the many inconsistencies of rendering across a bevy of differ-
ent browsers.

This is a big problem when it comes to communicating the design to a prospec-
tive client or a manager. We give them these static mock-ups with their per-
fectly laid out colors and fonts and then complain when they get upset that the
site doesn’t look the same across browsers.

The control these static mock-ups provide creates false expectations about how
the design will actually behave on the Web—on different browsers and differ-
ent devices.

This also causes a disconnect between designers and developers. The designer
hands the developer the approved static mock-up, but this often means that
there’s nothing to demonstrate to the developer how to handle the visual styles
when an object is interacted with.

In turn, graphics programs give the designer the illusion of having much more
control over the precise layout of a site. Any front-end developer I’ve ever
talked to has complained at one point or another of being handed a mock-up
of a site that just wasn’t realistic, or if it was, was terribly inefficient.

Particularly with a responsive approach, serving up multiple static mock-ups is
a fool’s errand. How many mock-ups will you be creating? What happens when
the CEO gets a new device with a different screen size and wants to see another
mock-up? As with separate sites, this method doesn’t scale particularly well.

Designing in the broWser

An alternative approach is to design in the very environment where the site will
actually live: the browser. This eliminates many of these issues.

A live, HTML-driven mock-up will better demonstrate what happens when
users interact with elements on the page. You can show how the mock-up
needs to change depending on the capabilities of the device or the browser in
question and see how the design looks on variously sized screens.

Designing in the browser has the added benefit of putting the focus on the
content and its structure. Considering the form of the markup this early in the
process can only be a good thing. After all, for most sites, it’s the content that
brings the visitors.

IMpleMentIng respOnsIve DesIgn170

ptg8274462

This isn’t for everyone though. Designing is a creative endeavor; you can’t do it
well using tools you’re not entirely comfortable with. There’s a certain level of fa-
miliarity and comfort for most designers when working in a graphics editor. That
same level of familiarity might not be present when designing in the browser.

This isn’t a fault of the approach itself, but rather of our tools and our own habits.

Our habIts

Just like a Whac-a-Mole game, the debate about whether or not a designer
should know how to code keeps popping up. It’s hardly a new topic. In 1990,
Mitchell Kapor was arguing that designers should know how to program:9

Designers must have a solid working knowledge of at least one modern pro-
gramming language (C or Pascal) in addition to exposure to a wide variety of
languages and tools, including Forth and Lisp.

I’m not willing to take quite that hard of a stance. I don’t think a designer needs
to know how to program (though that’s certainly a bonus), but I do think a
designer should know how to write HTML and CSS.

The Web is an interactive medium. In many ways, it’s much closer to software
than it is to print. Yet, historically, we haven’t treated it that way. Perhaps be-
cause the Web evolved largely from a print background, the document-centric
approach has driven the work process.

This is a flaw and a limitation, but a predictable one. It’s Marshall McLuhan’s
rear-view mirror theory in full effect (Figure 6.5).

A common retort from people who believe designers shouldn’t code is that you
wouldn’t want your architect to build your house, and that’s true. But I also
wouldn’t hire one who didn’t know how to. I’d expect the architect to be very
knowledgeable about building a house. I’d want her to know all about the con-
struction materials that could be used, and the pros and cons of each. I’d want
her to have a solid understanding of how to build a stable foundation and how
to compensate for the natural stress that a building has to endure.

The same is true of a web designer. The designer doesn’t necessarily have to
build the site by herself, but she should have a deep understanding of the
medium. She should know the language of the Web and that means HTML
and CSS, at the minimum. She should understand the constraints as well as the
unique characteristics and the possibilities.

9 Terry Winograd, Bringing Design to Software (Addison-Wesley, 1996)

Chapter 6 • Design WorkfloW 171

ptg8274462Maturing is hard—just ask any acne-ridden teenager. It is necessary though.
If we’re ever going to embrace the full potential of the Web, we need to move
beyond our comfort zones now and again.

The Web is an interactive medium: one that’s based on movement and interac-
tions, one that can be manipulated at the user’s whim. It makes little sense not
to embrace this in the earliest stages of a project.

Our tOOls

Graphic editors are too restrictive and don’t reflect the nature of the Web.
Unfortunately, for many designers, working in code removes the ability to be
creative and experiment. We need to build the skills necessary to work better
in this interactive medium, but we could use a little help from our tools.

In a presentation entitled “Inventing on Principle,” Bret Victor discussed the
need for immediate feedback from our tools to foster creativity:10

Creators need an immediate connection to what they create. And what I mean by
that is when you’re making something, if you make a change or you make a deci-
sion, you need to see the effect of that immediately. There can’t be any delay, and
there can’t be anything hidden. Creators have to be able to see what they’re doing.

10 “Inventing on Principle” at https://vimeo.com/36579366

figure 6.5
“We look at the
present through a
rear-view mirror. We
march backwards
into the future.”

—Marshall McLuhan

IMpleMentIng respOnsIve DesIgn172

https://vimeo.com/36579366

ptg8274462

Static mock-ups still have their place
It’s not likely that we’ll ever eliminate graphic editors from our workflow
entirely; that’s all right. That shouldn’t be the goal. graphic editors are
great for look and feel and intense graphics. We just need to be aware
that as a tool, they have serious limitations.

While it’s highly unadvisable to consistently use static mock-ups to pres-
ent your designs to clients, they can still be useful at times. For those
tricky look-and-feel graphics, it can be beneficial to quickly mock some-
thing up and present it for discussion.

Just make sure that you hop back into the browser as soon as possible
after getting feedback from the stakeholders.

This lack of an immediate connection to what we create is what causes many
designers to feel restricted by designing in the browser. Our tools today don’t
do a very good job of bridging that gap.

Until the wonder-tool comes along, it’s important to work toward loosening the
grip of your favorite graphic editing program. Don’t remove it entirely, but start
moving toward a more agile approach. Create the visuals as you code. Tackle the
two hand-in-hand and you’ll be much better equipped to work on the Web.

Style guides
To aid in this process, you should create a visual style guide and pattern library.
Style guides have been quite popular among large brands for quite some time.
A purely visual style guide lets people know how the visual identity of a brand—
the fonts, the images, and the logos—should be used. It ensures that even
though the designer won’t be directly involved in the creation of the materials,
the brand’s voice will still be heard in the final piece.

Applying this same concept to development brings us to the front-end style
guide. The guide demonstrates how different components should be displayed
throughout the site. This can include things such as tables, buttons, error mes-
sages, typography, images, and so on.

Chapter 6 • Design WorkfloW 173

ptg8274462

The guide also serves as an example for any markup patterns you should be us-
ing. For example, when demonstrating how a table should appear, you should
show how the markup for that table should be written, including the structure
and attributes. Doing this ensures that not only will your site maintain a con-
sistent visual appearance, but the code will also maintain a consistent form,
greatly simplifying maintenance.

Since these style guides are created in HTML and CSS, they’re an excellent
way to test how styles will behave across different browsers and different
widths. With all your components on one page, you need only load that page in
a different browser or on a different device to see at once how all the elements
behave in that environment. You can resize your window or adjust the text size
and see instantly how those changes affect the individual components.

If you decide to change a few styles, just adjust the guide and retest that page
across your target devices to quickly see how things will behave. When a browser
lacks support for a specific feature, are the elements still consistent with the over-
all look and feel? When you view the guide on a small-screen device, does the
typography still work? Do you need to adjust the font size on a large screen?

Style guides are becoming increasingly common. One of the best-known
guides is Twitter’s Bootstrap (Figure 6.6). Bootstrap demonstrates how every-
thing from media blocks to typography to modal boxes should be written and
stylized. A new developer inheriting a project with this kind of resource avail-
able will have no trouble getting up to speed.

figure 6.6
The Starbucks (left)
and Twitter Boot-
strap (right) style
guides are excellent
examples of how use-
ful a comprehensive
style guide can be.

IMpleMentIng respOnsIve DesIgn174

ptg8274462

CreatIng yOur style guIDe

There’s no right way to create a style guide. As long as the process you choose
leads you to a guide that’s simple to maintain and easy to test and review, then
it’s the right process.

One tool to consider is Paul Robert Lloyd’s Barebones. Barebones is a freely
available, multi-purpose framework that serves as an initial directory setup,
style guide and pattern library.

Setup is straightforward: download the code to the location of your choice and
you should be ready to go. The code creates the following directory structure:

•	 _assets: An empty folder intended for images and fonts for your site

•	 _css: A folder for storings your CSS

•	 _inc: An empty folder intended for PHP includes

•	 _js: An empty folder intended for JavaScript files

•	 _patterns: A folder for storing patterns for the pattern library

•	 _patterns.php: The page that will display the pattern library

•	 _styleguide.php: The page that will display the style guide

The two files of primary interest for this book are _patterns.php and _
styleguide.php.

The style guide (Figure 6.7) shows how the base markup (things like lists, header
elements, and horizontal rules) will display with the site’s styles. It’s a static page:
if you want to add an element to the guide, you edit _styleguide.php directly and
then add the styles to the _patterns.css file located in the _css directory.

In addition to being a nice visual reference of how elements should appear on
the site, the style guide also includes information about when and how certain
elements should be used.

The pattern library (Figure 6.8) shows how different snippets (like a tooltip
or an error message) are styled and displayed. In addition, the markup is dis-
played demonstrating how the snippet should be marked up in HTML.

All of the snippets included on the pattern page are stored as individual html
files in the _patterns directory. The pattern page searches through the folder,
displaying each snippet and its markup. Adding a new pattern is as simple as
creating a new file in the folder with the appropriate snippet and including the
styles in the _patterns.css file.

RC Note
You can download
Barebones from
GitHub at http://
github.com/paul-
robertlloyd/bare-
bones.

Chapter 6 • Design WorkfloW 175

http://github.com/paulrobertlloyd/barebones
http://github.com/paulrobertlloyd/barebones
http://github.com/paulrobertlloyd/barebones
http://github.com/paulrobertlloyd/barebones

ptg8274462

figure 6.7
The default style
guide included in
Barebones shows
how base markup is
styled.

figure 6.8
The Barebones pat-
tern library displays
how common snip-
pets will display, as
well as the markup
used to create them.

IMpleMentIng respOnsIve DesIgn176

ptg8274462

Let’s take a look at the PHP to see what’s going on here. Don’t worry, it’s pretty
simple code:
1.	 $files = array();

2.	 $patterns_dir = “_patterns”;

3.	 $handle = opendir($patterns_dir);

4.	 while (false !== ($file = readdir($handle))):

5.	 	 if(stristr($file,’.html’)):

6.	 	 	 $files[] = $file;

7.	 	 endif;

8.	 endwhile;

9.	 sort($files);

This section of the code is opening our patterns directory (line 3), reading out
the contents of each one (lines 4–8) and putting them into an array. It then
sorts them alphabetically by filename (line 9).

Now that it has a sorted array of all the snippets in the pattern directory, it
loops through that array, spitting out the content of the files into the style guide.
1.	 foreach ($files as $file):

2.	 	 echo ‘<div class=”pattern”>’;

3.	 	 echo ‘<div class=”display”>’;

4.	 	 include($patterns_dir.’/’.$file);

5.	 	 echo ‘</div>’;

6.	 	 echo ‘<div class=”source”>’;

7.	 	 echo ‘<textarea rows=”10” cols=”30”>’;

8.	 	 echo htmlspecialchars(file_get_contents($patterns_dir.’/’.$file));

9.	 	 echo ‘</textarea>’;

10.	 	 echo ‘<p>’.$file.’</p>’;

11.	 	 echo ‘</div>’;

12.	 	 echo ‘</div>’;

13.	 endforeach;

As it loops through the snippets, it inserts the snippet into a div (lines 3–5) and
the raw HTML into a text area (lines 6–11) so you can see the markup that
creates the snippet.

This deceptively simple tool makes it remarkably easy to add to the style guide.
Any time you have a new element you need to style, just include the snippet
in the patterns library and it will automatically show up on your guide. Main-
tenance is a piece of cake and you get all the value of having your styles and
snippets all displayed together on a single page.

Chapter 6 • Design WorkfloW 177

ptg8274462

Wrapping it up
Responsive design is more than a simple strategy: it’s the trigger for a com-
pletely new way of approaching projects for the Web, a new workflow that
better utilizes the unique strengths of this remarkable platform.

This new workflow must be agile and flexible. Because of the collaborative
nature of the new approach, communication, iteration, and especially respect
are absolute musts. Designers and developers should work closely throughout
every project.

Thinking mobile first helps you focus and recognize interesting new methods
of enhancing the experience for visitors. Mobile devices are becoming more
and more prevalent, and more and more capable, opening doors to new
methods of interaction and discovery.

Deliverables have to mature as well. Wireframes help you avoid getting too
caught up in the details early on in a project. Keep them as low fidelity as pos-
sible—there’s power in the implied malleability of a sketch.

Embrace the interactive nature of the Web and start creating mock-ups in the
browser. There’s only so much a flattened image file can portray about a site:
without the ability to show how the design behaves when users interact with it,
handoffs can become complicated.

Designing in the browser means it’s time for designers to brush up on their
HTML and CSS skills. It may be painful, but embracing the interactive nature
of the medium is a must. This doesn’t mean graphics editor programs are com-
pletely removed from the picture, just that they should no longer be the place
we start by default.

Thinking in systems can help us navigate the tangled diversity of browsers and
devices. Thinking page-to-page is not good enough. Style guides help by forc-
ing us to consider the individual components in a site and how they relate to
one another.

In the next chapter, we’ll look at how to create content that can be reused
across platforms as well as how we can adjust it and when.

IMpleMentIng respOnsIve DesIgn178

ptg8274462

Chapter 7

Responsive
Content

technology will change. Standards will evolve.
But the need for understanding our content—

its purpose, meaning, structure, relationships,
and value—will remain. When we can embrace

this thinking, we will unshackle our content—
confident it will live on, heart intact, as it

travels into the great future unknown.
—Sara WaChter-BoettCher

ptg8274462

Imagine you’re looking to buy a house. You find one online and the photos look
fantastic! There’s lovely hardwood flooring and plenty of space. The kitchen
has clearly been redone recently: the cupboards are all new and the counter-
tops sparkle. There’s a sunroom, a large family room, and a wraparound deck.
There’s even a heated pool. It couldn’t possibly get any better!

You go to look at the house and as you pull up, you notice to your bewilder-
ment that this lovely-looking home is crooked. The foundation is uneven and
cracked. It’s amazing the thing hasn’t collapsed.

A house is only as good as its foundation. You can spend all the time and
money you want on hardwood floors, granite countertops, and fancy light
fixtures, but if the foundation isn’t solid, the house won’t last very long.

Building a site without considering the content and, more importantly, the
message that content is trying to convey, is the equivalent of laying a beautiful
hardwood floor over compacted dirt. Understanding content and its purpose
is vital to the success of any project.

In this chapter, you’ll learn

•	 Why it’s important to consider content from the very beginning

•	 How to determine content structure and why it matters

•	 What content to display, and when—and why you can’t simply
rely on View Desktop

•	 How to enhance content for different devices

•	 When content order should change

•	 How to plan and structure content in a future-friendly way

starting with the content
As we discussed in Chapter 5, “Planning,” it’s important to consider content
from the very beginning of your project. Content is the backbone of most sites.
To not give it attention early on in the process is to undervalue the primary
reason people come to your site.

For many the rallying cry has been “Content First!” As a general concept, this
works just fine. However, as tends to happen with these sorts of things, some

ImplementIng reSponSIve DeSIgn180

ptg8274462

have taken it literally and believe that it means that design should not happen
until all content is finalized.

This is neither realistic, nor ideal. Content is an ongoing discussion that
needs to take place throughout the design process, and long after. As designer
Cennydd Bowles pointed out, design and content go hand in hand:1

Style and substance are irretrievably linked. Like space and time, they are
neither separable nor the same thing—there exists no hierarchy between
them, no primacy. One informs the other. The other informs the one.

A more realistic strategy would be “content structure first”: while you can’t
expect finalized content before you begin a project, you should have a solid
understanding of the different types of content, how each will be created, their
purpose, and their structure.

Along with this understanding of content structure, it’s helpful to have some
sample content to work with. Again, you don’t need everything at this point,
but having a sample news article, recipe, staff biography—whatever your types
of content may be—will guide the design while reaffirming that your planned
course of action for dealing with content is accurate.

But the truth of the matter is that you must start with communication: the
message you’re trying to get across. Only by knowing what you’re trying to
communicate can you determine the structure of your content, not to mention
the design of your site.

Content types
It’s important to know what types of content you’ll be displaying on a site. For
example, a news-based site will most likely have, at the very least, articles, blog
posts, and comments. Most news-based sites will be a little more granular.
Instead of “article,” some example content types might be an interview, a review,
and an editorial.

Similarly, in addition to blog posts and articles, a cooking site might include
content types such as recipes and chef bios. Determining content types is an
important step for any site: all sites have content that can, and should, be
broken out into types.

1 “What bugs me about ‘content-out’” at www.cennydd.co.uk/2011/what-bugs-me-about-content-out/

Chapter 7 • responsive Content 181

www.cennydd.co.uk/2011/what-bugs-me-about-content-out/

ptg8274462

Knowing content types also helps frame discussion about structure, creation,
and purpose. Each of these considerations will in turn guide decisions about
how to reorganize the hierarchy of content as the site adapts to different
resolutions and capabilities.

Purpose
For each type of content, you must know its intended role. If you’re not sure of
the purpose of your content, how can you possibly make decisions about what
content should take priority in which scenarios?

Responsive design inevitably results in you having to shuffle the location
of content around on a page. Having an intimate knowledge of the purpose
of your content helps you determine how to reorganize your content while
maintaining the hierarchy.

Creation
Figure out how each kind of content is created. Who’s responsible for content
creation? Who edits and maintains the content? What’s the process for getting,
say, a new article on the site? For example, is there an editorial process that the
content must go through? Who has to approve the content before it’s published?
Who gives final sign-off?

These kinds of questions play an important role in helping you determine how
to build your site or application.

Structure
Designing a site for different devices and platforms means that your content
has to evolve, to shift between contexts. Each change in context creates a poten-
tial shift in the priority of your content.

When I talk about structured content in this sense, I’m not talking about se-
mantic HTML markup, though that’s obviously very important (and related).
Instead, I’m talking about structured content at the database or model level.
Each content type contains any number of specific chunks of content. An ar-
ticle, for example, must have a title, a body, an author, and a creation date. You
determine these different chunks through a process called content modeling.

ImplementIng reSponSIve DeSIgn182

ptg8274462

Content moDelIng

Content modeling is the process of determining and documenting the struc-
ture of your content. Each chunk of content should have a very specific mean-
ing and purpose: This will help guide decisions about how to utilize it on
different platforms and devices.

These chunks of content should also be stored as discrete entities (e.g. database
fields) so they can be found easily and utilized where appropriate. If everything
is clumped together in one big blob, with no metadata to break it up, you won’t
be able to reprioritize the content when necessary.

A great example of this is any product information page. Such a page typically
contains a photo, the name of the product, a description, some reviews, pric-
ing, and additional suggested purchases. Each of these are individual entities
or fields that should be stored separately. If the description and pricing are
lumped together in one field, you have virtually no control over how those
components will be adjusted to work at different resolutions. They’re too
tightly coupled to manipulate the method, and order, of their display. Likewise,
if there’s no appropriate metadata attributed to the product itself or to the
potential suggestions, you won’t be able to make intelligent decisions about
which additional items to display.

If, instead, each component is stored separately, with appropriate metadata,
you can arrange them however you like to ensure that hierarchy is maintained.

Content modeling requires that you do a deep-dive analysis of your content.
How modular does it need to be? What types of content will need to be reused
in different locations? Does some content need to be displayed in a completely
different way depending on the page? Will you need to sort or filter the con-
tent? What are the time constraints of your content creators? Answers to these
questions, and more, are necessary for creating an accurate and successful
content model.

Don’t try to do any content modeling until after you understand the higher
purpose of the content: who will be consuming it and what it needs to com-
municate. Remember, without an understanding of the purpose of your con-
tent, you can’t possibly determine how to structure it to ensure reusability
and adaptability.

DD Metadata
Data that provides
context for a chunk
of content. For ex-
ample, tagging some-
thing as “travel” is a
way of indicating that
a chunk of content
contains information
about traveling.

Chapter 7 • responsive Content 183

ptg8274462

Because of the deep level of analysis it requires, content modeling not only
helps you determine the different chunks of content you need but also guides
fundamental decisions about how content will behave in a responsive site.
Specifically, content modeling can help you determine:

•	 What content to display, and when

•	 Whether the order or priority of content should change for different
circumstances

What content to display, and when
Armed with information about your content structure and hierarchy, you can
make informed decisions about how your content should be displayed as your
design adjusts to accommodate different sizes and contexts. If you’ve taken the
time to understand the content’s purpose and structure it properly, you now
have adaptive content.

In her book Managing Enterprise Content: A Unified Content Strategy, Ann
Rockley defines adaptive content as “content that can be displayed in any
desired order, made to respond to specific customer interactions, changed
based on location, and integrated with content from other sources.”2

There are two basic strategies here:

•	 Removing content

•	 Enhancing content

Removing content
If you’re thinking about removing content entirely for a certain context, be very
careful. Specifically, I’m referring to the alarming trend of hiding content on
mobile devices and offering a View Desktop or View Full Site link for anyone
who might want the “full experience” (Figure 7.1).

2 Ann Rockley and Charles Cooper, Managing Enterprise Content: A Unified Content Strategy (New Riders, 2012)

Figure 7.1 An all too
common practice
on mobile sites is
to provide a limited
subset of content
and a link to view the

“Full” or “Desktop”
version of a site.

ImplementIng reSponSIve DeSIgn184

ptg8274462

vIeW DeSktop IS not a SolutIon

Let me paint a scene for you.

You’re a regular reader of your local newspaper. You’re also opposed to the un-
necessary waste of paper, so you subscribe to the online version. Everything is
great. The content is of high quality and you become very familiar with how to
navigate the site to find your favorite types of content.

Then you open the site on your phone. The only pieces of your favorite paper
that are left intact are the top five stories from this week and a few of the most
popular categories. The rest of the content has been removed.

Reluctantly, you click the View Desktop link to see the version of the site de-
signed for larger screens. At least you know you can find the content you wanted
to read there—even if the formatting is less than ideal on your small screen.

This scenario happens all too often on today’s Web. The powers that be—
whether that’s the developers, the designers, or the people who sign their
checks—decide that mobile users don’t want the full site. They want this sim-
plified version of the site with only the most popular content. If visitors want to
browse the site in detail, well, that’s what the View Desktop link is for.

The problem is that these assumptions about what mobile users want are driven
by outdated views of how users interact with the Web on their mobile devices.

The traditional view of the mobile user goes something like this. He’s in a hurry
and on the go. When he goes online on his phone, he’s doing so because he
wants to get at a specific piece of information and doesn’t have time to waste in
doing so. This is not casual browsing—mobile users are very task oriented.

That’s often not the case anymore. The capabilities of smartphones have im-
proved so much that the browsing experience on a mobile device is no longer
unbearable. In fact, on the right device, the mobile browsing experience is
quite enjoyable. Further complicating the matter is the changing definition
of a “mobile device”; tablets have further muddled the situation.

There are still times when a mobile user has a specific piece of information he’s
after, but just as often he simply wants to browse for a bit. He’s using the device
at home, in the waiting room at the dentist, and in the car while waiting for his
kids to get out of school. These aren’t your traditional scenarios of mobile use—
this is recreational, casual browsing.

Chapter 7 • responsive Content 185

ptg8274462

In these situations, what the user wants is not a crippled experience, but the full
one. He wants a design optimized for his device, but the content needs to be
the same and the experience needs to be familiar. If he feels that a site is hold-
ing back information that would be accessible on the desktop, he’ll start hunt-
ing for that link to the desktop version.

We can’t use the View Desktop link as a cop-out. If the user has to click that
link, then we’ve already failed him. He may have access to the content he wants,
but the experience is no longer very enjoyable.

When a site is viewed on a mobile device it should be simple and easy to use,
but not dumbed down.

truSt

It all boils down to trust. Right now, people don’t trust the mobile version of
sites—particularly when they see that View Desktop or, even worse, the View
Full Site link.

They’ve been burned by these mobile versions too many times. Content has
gone missing, navigation paths have become unfamiliar. They’ve struggled with
these issues so many times that they no longer trust the design you’ve put on
their phone, no matter how pretty it might look.

We can’t make fundamental decisions about which content to display and
which to hide based on assumptions driven by the kind of device in use.

Enhancing content
Rather than removing content entirely, a better practice is to design each expe-
rience and then enhance the content so it responds as you’ve planned.

It’s entirely possible that all of the content displayed for one variation of your
design doesn’t need to be displayed for another. For example, if you’re design-
ing a page that sells clothes, it might make sense to display 10 related items
on a large screen, but only two or three on a small-screen device. Perhaps it
even makes sense for your core experience to not list related items at all, but
to simply display a Related Items link.

It may also make sense for excerpts to be shortened on smaller screens.
For example, on large screens it might make sense to show a teaser paragraph
followed by a Read More link, but to conserve screen space, it might be better
to reduce the paragraph to a single sentence for mobile devices.

ImplementIng reSponSIve DeSIgn186

ptg8274462Let’s take a look at a simple example of conditionally loading content using
JavaScript.

Looking back at the article page for Yet Another Sports Site, we can see the
related headlines content in the sidebar (Figure 7.2). We decide that to save
space on small screens we don’t want to list the latest headlines by default. In-
stead, we’ll display a link to view the latest headlines. When that link is clicked,
the articles will appear.

To enhance the experience when necessary, we’ll use what Scott Jehl dubbed
the anchor-include pattern. The anchor-include pattern is a pattern for making
an already functional link work as a client-side include through progressive
enhancement. Jehl’s snippet requires jQuery, and while there’s nothing wrong
with that, for demonstration purposes we’ll build ours using vanilla JavaScript.

We’ll cheat a little bit, though. Using XMLHttpRequest appropriately cross-
browser requires a bit of tweaking that’s beyond the scope of this book. So,
when it comes to the Ajax portion of the function, we’ll use Reqwest.js—a
small, compact module for including Ajax functionality. If Reqwest isn’t
your cup of tea, you can use the Ajax helper of your choice—it should be
interchangeable.

Figure 7.2 Currently,
the latest headlines
are all listed out on
the small screen layout,
consuming much of the
screen real estate.

DC Note
Visit http://filament
group.com/lab/
ajax_includes_
modular_content/
to see Jehl’s jQuery
snippet and read a
post on the technique.

DC Note
Reqwest is included
in the example
files. Or you can go
to https://github.
com/ded/reqwest
to download it from
GitHub.

Chapter 7 • responsive Content 187

http://filamentgroup.com/lab/ajax_includes_modular_content/
http://filamentgroup.com/lab/ajax_includes_modular_content/
http://filamentgroup.com/lab/ajax_includes_modular_content/
http://filamentgroup.com/lab/ajax_includes_modular_content/
https://github.com/ded/reqwest
https://github.com/ded/reqwest

ptg8274462

Let’s start by considering the base experience. If JavaScript isn’t enabled, or if
the screen is below a certain size, we want just a basic link to appear:
1.	 <section class=”related”>

2.	 	 View the latest headlines

3.	 </section>

We’re using the id attribute to provide a hook for the JavaScript—a way to
identify the link in the script. We’ll also need to know what element the result-
ing content should be placed into. For that, we’ll use the new data-* attribute
in HTML5. The data-* attribute lets you create your own attributes to place
data into instead of overloading existing attributes. You can name your data-*
attribute anything you want provided it begins with the data- prefix. In this
example, since the attribute is telling the script which element to target, nam-
ing the attribute data-target seems to make the most sense:
1.	 <section id=”related” class=”related”>

2.	 	

 View the latest headlines

3.	 </section>

We’ve simply used a data-target attribute to identify which element we’ll put
the result into once we’ve grabbed the content.

Before writing the JavaScript, let’s take a look at the headlines.html page:
1.	 <h2>Related Headlines</h2>

2.	

3.	 	 That Guy Knocked Out the Other Guy

4.	 	 Your Favorite Sports Team Lost. Again.

5.	 	 The Yankees Buy the Entire League

6.	 	 Guy Says Something Stupid in the Heat of the

 Moment

7.	 	 New Record Set as Neither Team Scores

8.	 	 Why Haven’t You Clicked One of Our Headlines

 Yet?

9.	

As you can see, there’s not much going on here. It’s just the snippet that used to
be in the article page by default.

DC Note
In production, it
might be better to
extract this snippet
from within an entire
page. That way, if
JavaScript isn’t en-
abled, the visitor will
still get a full page
when they click the
link. For demonstra-
tion purposes, a snip-
pet will work fine.

ImplementIng reSponSIve DeSIgn188

ptg8274462

Now, add the anchorInclude function to the Utils object (first introduced in
Chapter 3, “Media Queries”).
1.	 // anchorInclude turns a functioning link into an client-side include

2.	 anchorInclude : function (elem) {

3.	 	 //grab the link’s url

4.	 	 var url = elem.getAttribute(‘href’);

5.	 	 //grab the target element where our result will appear

6.	 	 //set on the link using the data-target attribute

7.	 	 var target = document.getElementById(elem.getAttribute

 (‘data-target’));

8.	 	 //make our ajax request

9.	 	 //using reqwest.js for demonstration purposes

10.	 	 reqwest(url, function (resp) {

11.	 	 	 //place the result into our target element

12.	 	 	 target.innerHTML = resp;

13.	 	 });

14.	 }

The anchorInclude function takes a functioning link (elem) as a parameter
(line 2). Once the script has the link, it grabs the link’s URL using the
getAttribute method (line 4). The same method is used to get ahold of
the target element (line 7).

Next, the script makes an Ajax request (lines 10–13). Again, I’m cheating here
and using Reqwest, but you can use the Ajax helper of your choice. The request
is made to the URL that was already grabbed from the link. The response is
then inserted into the target element using the innerHTML property (line 12).

You now have a working anchorInclude function. If you grab the lazy loading
link and pass it to the function, you should see the headlines appear in place
of the link:

var lazyLink = document.getElementById(‘lazy’);

anchorInclude(lazyLink);

All that’s left is to tell the function when to fire. Since you’re already using
matchMedia to check the breakpoint for lazy-loading the images, you can just
drop the anchorInclude function call in there as well:

if (window.matchMedia(“(min-width: 37.5em)”).matches) {

 Utils.anchorInclude(lazyLink);

 ...

}

Chapter 7 • responsive Content 189

ptg8274462

If the device matches the media query, the conditionally loaded content will
appear. If not, the basic link will display.

You can actually enhance this further. Currently, on a small screen device, when
you click on the link you’ll continue to the linked page. This may be fine, but
you could improve the experience for those with JavaScript enabled if you in-
stead loaded that conditional content on click. To do so requires only that you
add an else to the if statement:
1.	 //only run this function when the screen’s width is at least 600px

2.	 if (window.matchMedia(“(min-width: 37.5em)”).matches) {

3.	 	 Utils.anchorInclude(lazyLink);

4.	 	 ...

5.	 } else {

6.	 	 //if the screen is less than 600px wide

7.	 	 //load the headlines only if the link is clicked

8.	 	 lazyLink.onclick = function() {

9.	 	 	 Utils.anchorInclude(this);

10.	 	 	 return false;

11.	 	 }

12.	 }

Enhancement through truncation
Another way to optimize the experience for the small screen may be to
truncate some of the text. For example, let’s say you have a teaser para-
graph for an article with a link to the full piece at the end. You could
reduce that to simply be a link to the full piece, or you could decide to
leave a little bit of a summary there to entice people to read more.

If you have a “teaser” field stored in your database, you can do this by ensur-
ing that the hook of the story is contained within, say, the first two sentences
of the blurb. That way, no matter whether the truncated or complete teaser
is displayed, the main gist of the article is still shown to the visitor.

Just be sure you don’t truncate key content. A teaser is a good example
of something you could truncate. You wouldn’t want to truncate the
article itself, or anything that could then lose its meaning. It’s easy to get
carried away and start removing content that’s important for the user to
have access to in order to provide consistency. Truncation is a strategy
that must be applied with care.

ImplementIng reSponSIve DeSIgn190

ptg8274462

The result is that the content will always be conditionally loaded (provided
JavaScript is enabled)—it’s just a matter of when (Figure 7.3). This is progres-
sive enhancement at its finest. If JavaScript is not supported, or it’s turned off,
the visitor gets a completely usable site and all the content is still intact.
If JavaScript support is available, the experience is enhanced, regardless of
the dimensions of the screen.

When should content order change?
As I mentioned before, adjusting the layout of your site for multiple devices and
resolutions means you’ll have to make decisions about the order of content at
those different screen sizes. The inability to negotiate content order is currently
one of the biggest limitations in a purely front-end driven responsive approach.

Take, for example, the Yet Another Sports Site article page. Imagine, for a second,
that the sidebar contains content relevant to the article, like a photo gallery or
videos associated with the article.

Figure 7.3 With the
JavaScript in place,
large-screen displays
will see a list of
headlines (left) while
small screens (right)
will see a link to the
headlines, conserving
screen real estate.

DC Note
Chapter 8, “RESS,”
discusses feature and
server-side device
detection. Combin-
ing responsive design
with detection can
help you negotiate
the order of content.

Chapter 7 • responsive Content 191

ptg8274462

On a large screen, this layout would make sense. The sidebar content would be
shown inline with the article so users would have quick access to it.

But what happens when the layout is suddenly converted to a single column
on a small screen? Suddenly, because of the way the HTML is created, the
sidebar content is pushed below the main column (Figure 7.4). Is that really
what should happen, however? Is the sidebar content suddenly that much less
important than the ancillary content in the main column?

You may also want to emphasize certain bits of content depending on the type
of device in use. If a smartphone is being used to access a restaurant site, for
example, then the restaurant’s contact or location information should definitely
be front and center.

Structure, again
These kinds of scenarios are exactly why content structure is so important. If
that content is all one WYSIWYG (What You See Is What You Get)-generated
blob, there’s not much you can do. In fact, your decision becomes binary: dis-
play the blob of text or don’t display it. That’s it.

If the content is separated neatly and stored as chunks, and if that content
is also marked up with the appropriate metadata—using the techniques we
talked about earlier in the chapter—then you have a bit more power and flex-
ibility. Now, manipulating the content order isn’t quite as difficult. Structured
content gives you options. You’re able to make decisions about how content
should behave on a much more granular level.

help IS juSt arounD the Corner

Unfortunately at the moment there isn’t much to be done to solve the prob-
lem of content order without using some server-side negotiation or JavaScript
hackery (see the sidebar, “Shifting Content” for more information). There are,
however, a few CSS layout methods being worked on that should help reduce
the issue of source order: the Flexible Box Layout Module (Flexbox for short)
and Grid Layout.

Flexbox would allow you to style containers so that they can be arranged in any
direction and can “flex” their size to accomodate the space available to them.
Among the many useful features is the ability to define an order that your con-
tent should display in. So, for example, you could have your navigation element
come first in your source, but display last on the page.

DD WYSIWYG
What You See Is
What You Get. A
WYSIWYG editor
(sometimes referred
to as a rich text edi-
tor) gives the content
creator the ability to
style content during
the editorial process
through a series of
buttons.

Figure 7.4 All of the
sidebar content is
pushed below every-
thing in the main
column, but some-
times that doesn’t
make sense.

ImplementIng reSponSIve DeSIgn192

ptg8274462

Shifting content
If you just want to shuffle a few pieces of content around on a page, say
an ad for example, then appendAround (found on GitHub at https://
github.com/filamentgroup/AppendAround) from Scott Jehl and the rest
of the Filament Group may be just the ticket.

His clever solution involves inserting empty div elements into the page
to serve as containers for the content to slide into. Each div is given the
same data-set attribute value to designate that they are all related. For
example:

1.	 <div class=”foo” data-set=”foobarbaz”></div>

2.	

3.	 	 ...

4.	

5.	 <div class=”bar” data-set=”foobarbaz”>

6.	 	

7.	 </div>

In the case of the above, both div’s have the same data-set value. One is
empty and one contains the ad. Using CSS, you make sure that only one
of the two div’s is ever visible. For example, you might hide the div with
the class “bar” for small screens and hide the div with the class “foo” for
larger screens.

When the page loads, the appendAround script looks to see which ele-
ment is displayed and ensures that the ad is placed within it.

It’s a clever solution, though it’s probably not advisable to make substan-
tial changes to the order of your content using the script. For simple shuf-
fling of an ad or specific chunk of content, however, it’s a very handy tool.

Grid layouts also offer a way to re-order how your content is displayed. Using
CSS Grid layouts you would be able to create columns and rows, and then
assign an element to display within a specified cell.

Unfortunately, at the time of writing both specifications are still in a state of
flux and therefore, support is scarce. Still, you should take some time to be-
come familiar with them. Once they’re here you’re going to want to use them.

Chapter 7 • responsive Content 193

https://github.com/filamentgroup/AppendAround
https://github.com/filamentgroup/AppendAround

ptg8274462

Where we need to go
Here’s the thing: The issue of platform and device fragmentation isn’t getting
better anytime soon. In fact, it’s going to get worse. To survive in this increas-
ingly complex ecosystem, the way content is stored and accessed has to change.

Code soup
Today, many sites are powered by content management systems (CMSs).
These systems are intended to make it easier to maintain and update content
by allowing a simple method of input. This ease of input is made possible in
no small part thanks to WYSIWYG editors.

WYSIWYG editors give the content creator controls similar to what they’d
have in a document editing application, such as Microsoft Word (Figure 7.5).
Using them requires no knowledge of HTML—just select some text, click a
button, and it’s magically 18px, hot pink, and Comic Sans!

This abstraction comes at a very steep cost. The markup generated by these
editors is a muddled mess of content and markup—often markup that is both
unnecessary and misused. We then store this muddled mess of content and
markup into the database.

Let’s ignore the storage issue for a minute. If you’re considering your content in
the very limited perspective of how it appears on that specific page on a specific
kind of device, then a WYSIWYG sort of works. The problem is that content
on the Web is not constrained to a single page—it can go anywhere.

Figure 7.5 WYSIWYG
editors try to provide
content creators with
the same kind of
controls they have in
a document editing
application.

ImplementIng reSponSIve DeSIgn194

ptg8274462

In Rachel Lovinger’s excellent “Nimble Report,” she discussed the need for
content to transcend the single page:

This is what content needs in order to survive. It must be free to go where and
when people want it most.

It must be free to be read or viewed on a wide range of portable and networked
devices. It must be free to mix and mingle with services, social networks, apps, and
content from other sources. In a highly connected world, content that’s trapped in
a silo is basically invisible. And invisible content might as well not exist.

Content today has to be able to go anywhere—different contexts, different
devices, even different styling. Being able to control content to the level a
WYSIWYG might imply is just not realistic anymore.

Going back to the muddled mess of markup, it should now be obvious why this
can’t work. By storing code soup in the database, we chain the content to a very
specific display format. If we need to alter the display, the markup, or the hierar-
chy, we’ve just made things very difficult for ourselves.

This issue transcends responsive design. Database-driven content has the po-
tential to go anywhere. In theory, you should be able to use that single database
of content to serve all your initiatives—your site, your applications,
e-book collections, even print. That mess of markup and content, though,
limits that potential. It makes the cost of reuse much, much higher.

Baby steps
Unfortunately, we can’t just take away everyone’s WYSIWYGs overnight
(though I admit, I wish we could). We need to get past the existing mental
models that are now well engrained into content producers.

WYSIWYGs bring comfort and familiarity to many content producers today;
moving from a WYSIWYG model is going to be quite painful for many of them.

Yet, it has to happen. If we’re going to capitalize on the unique characteristics of
the Web and survive the ever-increasing diversity of Internet-enabled devices,
we need to start taking our content seriously.

We need to understand that this familiarity exists and take the time to commu-
nicate with content creators. Take the time to show how WYSIWYG actually
reduces the amount of control they have.

DC Note
Rachel Lovinger’s

“Nimble Report” is
essential reading for
anyone who cares
about content in
the current digital
age—that should be
everyone by the way.
Go to http://nimble.
razorfish.com/
publication/?m=
11968&l=1 to find it.

Chapter 7 • responsive Content 195

http://nimble.razorfish.com/publication/?m=11968&l=1
http://nimble.razorfish.com/publication/?m=11968&l=1
http://nimble.razorfish.com/publication/?m=11968&l=1
http://nimble.razorfish.com/publication/?m=11968&l=1

ptg8274462

If you must provide WYSIWYG controls, opt for an editor that’s as stripped-
down as possible. For example, instead of offering color, size, and font choices,
only include basic formatting controls such as making text bold or italicized.
Doing this eliminates many of the most serious pain points when it comes to
WYSIWYG-generated code.

In the end, content creators want to make quality content. If you take the time
to show them how to do it, you’ll get a lot further along.

Building an API
One way to ensure that your content can go anywhere is to build an internal
API. First, build an API to your content. Then, use that API to power your
digital initiatives.

That’s exactly what NPR (National Public Radio) did. They set a lofty goal
of achieving what they termed COPE (Create Once Publish Everywhere).
Instead of needlessly duplicating time and effort, they wanted their database
of content to power all their initiatives.

So, they rolled their own CMS. All the content is separated into different
fields to ensure that the structure is solid. Before storing the content in a da-
tabase, they filter out the markup. The location and type of markup is stored
in one table, while the raw content is stored in another. They then use an API
to pull this content from the database and bring it to their applications, their
site—everywhere.

The future of content relies on this kind of structure and consideration. It must
have three basic layers: storage, translation, and view layers.

Storage layer

Content must be stored in chunks, with meaningful metadata, so it can be
requested and utilized however and whenever it’s needed.

tranSlatIon or apI layer

However you stored your content, this layer then translates it into something
usable. It’s the translation layer that requests the specific chunks of content that
are needed for any specific device, site, application, or platform.

ImplementIng reSponSIve DeSIgn196

ptg8274462

vIeW layer

Now that you’ve got that content translated into something usable, the view
layer determines how it’s displayed: order, interactions, and so on.

Viewing content in this way gives you incredible flexibility. You can request
only the content that you need and format it in any number of ways. This is
content that is truly adaptive.

It also lets people focus on the part of the task they do best. Writers can focus
on what the content means, while people who are more familiar with the site
or the device that will be accessing that content can focus on how that content
should look to best convey meaning.

Wrapping it up
While content must be considered from the very beginning of a project, don’t ex-
pect final content before you start designing. Instead, know first what the site needs
to communicate—the key messages—then what types of content will be displayed,
how it will be created, what each type of content’s purpose is and how it is struc-
tured. Some sample content can be very helpful for guiding design decisions.

Sometimes it makes sense to truncate content on smaller screens. However, don’t
assume that just because you have a View Desktop link on your site that you can
start stripping content on smaller screens. People use many devices to access your
content and if the experience isn’t familiar, they’ll lose trust in the site.

Instead of hiding content, enhance it. Design how the content will change
for each environment and then choose the right technique to make it happen.
Some clever coding and planning will let you create a solid base to build on as
the screen size allows.

Content order, too, needs to change. Consider your content’s metadata, and
plan carefully to make sure the hierarchy is consistent across devices.

Moving forward, content needs to be taken more seriously. Continued use
of WYSIWYGs will only add to the problem. Instead, use structured content
served up by an API. Even if you’re not using an API, thinking about how your
content would need to be structured to go through an API can help guide your
decisions about how that content should be created and stored.

Chapter 7 • responsive Content 197

ptg8274462

Now it’s time to start looking at how detection can augment our responsive
site. The content, and the experience in general, will benefit from a bit more
customization from device to device.

In the next chapter, we’ll discuss how feature detection and server-side detec-
tion can both play a part in creating a more optimized experience for visitors.

ImplementIng reSponSIve DeSIgn198

ptg8274462

Chapter 8

RESS
It is a bad carpenter who quarrels with his tools.

—Mohandas GandhI

ptg8274462

I’m no carpenter. Give me a hammer, some nails, and a pile of boards and you’ll
get a bunch of bent nails, a pile of boards (with hammer indents), and some
cheap comic relief. That doesn’t mean the tools were bad. Give those same
materials to a carpenter and you’ll get a sturdy bench built to last a long time.

There’s a lot of debate surrounding server-side detection and responsive
design. Many developers claim that server-side detection is inherently wrong.
Of course, many of those on the other side of the fence say the same thing
about client-side responsive design.

Neither approach is a solution in and of itself, but they are valuable tools. We’ve
spent a great deal of time talking about client-side responsive design and what
it can do. Let’s highlight a few things it doesn’t do well:

•	 Content adaptation. Content adaptation, optimizing markup on devices
to target their unique capabilities, is not something responsive design
does particularly well. Client-side solutions can only work with what’s
being sent down the pipe.

•	 Performance considerations. We already discussed just how difficult it is
to serve appropriately sized images using client-side adaptation. Respon-
sive design is also incapable of optimizing the markup, JavaScript, and
CSS to ensure that no unnecessary data is downloaded.

•	 Targeting low-end devices. If built carefully, it’s remarkable how many
devices you can reach with a responsive site. However, if you need to
target older, low-end mobile devices you may need a bit more. Many of
them support only a subset of the HTML standard, called XHTML-MP.

•	 Targeting TVs. TVs are still picking up momentum, but you can rest
assured that they will soon be wreaking chaos for web developers every-
where. Client-side detection is useless for TVs. The resolutions are similar
to many desktop monitors and TVs don’t support the “tv” media type
(discussed in Chapter 3, “Media Queries”).

These are issues that are difficult, if not impossible, to resolve using client-side re-
sponsive design alone. For these kinds of improvements, some sort of server-side
detection is necessary as well. That’s where Responsive Design and Server-Side
(RESS) components—a concept developed by Luke Wroblewski—come in.1

1 “RESS: Responsive Design + Server-Side Components” at www.lukew.com/ff/entry.asp?1392

IMpleMentInG responsIve desIGn200

www.lukew.com/ff/entry.asp?1392

ptg8274462

In this chapter, you’ll learn

•	 How to use user agent detection

•	 How to use feature detection

•	 How to combine user agent detection and feature detection

•	 How to implement an RESS approach

•	 How to install and configure a WURFL library

•	 How to use WURFL to optimize for small-screen phones and
devices with touch screens

Let’s start by looking at the two basic detection methods: user agent detection
and feature detection.

User agent detection
User agent detection is the practice of looking at the user agent string of the
browser and using that to make decisions about how to serve your site. This
is done at the server.

User agent detection has a bad reputation, and deservedly so. For a long time,
it was misused and abused. User agent detection was used to serve up one ver-
sion of a site for, say, Internet Explorer and another for Netscape. Because the
two browsers had different levels of support, developers resorted to user agent
detection to fork the experience, and in many cases, exclude some browsers
from an experience entirely.

As a result, most user agent detection implementations ended up excluding
people (Figure 8.1). Fundamental decisions were made about who got to see
what content based on this little string, often with no good reason. So, the brows-
ers that weren’t getting any love decided to lie. They started manipulating their
user agent strings so they would be recognized as the more popular browsers.

This is why using too basic of a method of detection can be dangerous and un-
reliable. User agent strings are often purposefully trying to present themselves
something they’re not.

Now before you go blaming the browsers for this mess, remember it was the de-
velopers who forced their hand. Had the technology been handled appropriately
from the beginning, the situation would not have become nearly so muddled.

Chapter 8 • reSS 201

ptg8274462

That’s not to say there isn’t value in user agent strings—there is. Device databases
have been carefully curated by developers to ensure a fairly high degree of accu-
racy. You just need to be careful about how you use them. Don’t make the mis-
take of using user agent detection to exclude, like so many have done in the past.
Instead, use user agent detection to enhance the experience where it makes sense.

Anatomy of a user agent string
A user agent string is one of several HTTP headers that get sent by the browser
whenever a page or resource is requested. Its purpose is to identify the client
(browser) in use. Unfortunately there’s no standard convention for how user
agent strings should be written and there’s a lot of useless information. Con-
sider the following example taken from a Samsung Acclaim:

Mozilla/5.0 (Linux; U; Android 2.2.1; en-us; SCH-R880 Build/FROYO)
AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1

All that matters out of that string is the following information:

•	 Android 2.2.1: This phone is running the Android OS, version 2.2.1.

•	 AppleWebKit/533.1: This is the layout engine and build number.

Figure 8.1 User
agent detection is
frequently abused,
excluding people
from sites altogether.

IMpleMentInG responsIve desIGn202

ptg8274462

That’s about it. The SCH-R880 part tells us that this is a Samsung Acclaim, and
that’s potentially of value as well, depending on what you want to do.

If you’re uncomfortable dissecting user agent strings manually, don’t worry:
there are a lot of services out there that will do it for you. Still, it’s good to be
aware of the general structure of user agent strings in order to understand how
these services gather information based on them.

What can you do with user agent detection?
You can use user agent detection in a variety of ways. There are simple scripts
that will parse the string and tell you if the device is “mobile” or something else.

At the other end of the spectrum, device detection repositories (DDR) like
WURFL and DeviceAtlas bring back an incredibly detailed list of information
about the device, the browser, the operating system, and what is supported.

Take WURFL, for example. If you were to pass the Samsung Acclaim’s user
agent string to WURFL, you’d get a list of 500 different capabilities in return.
These capabilities range from checking to see if CSS gradients are supported to
determining whether or not the device can place a phone call.

Once you have this kind of information, you can customize the experience and
tailor the markup, CSS, and JavaScript to ensure that only what is needed is
sent down to the device.

pros of user aGent deteCtIon

•	 It provides detailed information.

•	 Since it’s server-side, it lets you eliminate unnecessary resources
from being sent down to the device.

Cons of user aGent deteCtIon

•	 If not carefully applied, it can be unreliable, due to a long history
of spoofing.

•	 Getting detailed information requires use of a third-party service,
which adds expense to a project.

DD WURFL
WURFL is one of
the oldest and most
widely implemented
device detection
repositories.

Chapter 8 • reSS 203

ptg8274462

Feature detection
The other popular detection approach is feature detection, which is typically
a client-side approach. With feature detection, you don’t bother with the user
agent string. Instead, using JavaScript, you test whether or not a specific feature
is supported. For example, you might check to see if the browser in use sup-
ports JSON (JavaScript Object Notation) natively by using the following:

return !!window.JSON;

Then, armed with information about whether native JSON is supported, you
could use JavaScript to fork the behavior of the page.

One caveat: Browsers behave a little like fishermen—they tend to exaggerate
a bit. Support is not binary; it’s a gradient of levels. While a browser may claim
to support a specific feature, the quality of that support may vary dramati-
cally. As with user agent detection, using feature detection correctly requires
careful consideration.

Modernizr
Many scripts that help with feature detection have popped up, the most popu-
lar of which is Modernizr. Modernizr tests over 40 different features and pro-
vides three things to help with development:

•	 It creates a JavaScript object containing the results of the tests.

•	 It adds classes to the HTML element indicating which features are and
are not supported.

•	 It provides a script loader so you can conditionally load polyfills.

Forty tests is a lot, and probably overkill for most sites. As a result, Modernizr
lets you create a custom build of the script containing only the tests you need
for your specific project.

Once you have the build in place, drop the script into the head of your document.
It’s also a good idea to add a class of nojs to the html element of your page:

<html lang=”en” class=”nojs”>

When the user requests the page, if Modernizr is able to run successfully, it will
replace nojs with js, indicating that JavaScript is supported. By adding nojs

DC Note
You can download
the latest version
of Modernizr from
http://modernizr.
com.

IMpleMentInG responsIve desIGn204

http://modernizr.com
http://modernizr.com

ptg8274462

by default, you provide a way to style elements on the page if no JavaScript is
supported. For example, the following declaration would allow you to apply
overflow:hidden to the body element if JavaScript is unsupported.

body.nojs {

 overflow:hidden;

}

The other thing Modernizr does is add a series of classes to the html element
indicating what features are supported. For example, if your build tests only for
canvas support, geolocation support, RGBA support, and touch support, your
HTML element might look like this:

<html lang=”en” class=”js canvas gelocation rgba touch”>

In addition to the classes to aid in styling, you have access to the results of the
tests in JavaScript through the Modernizr object.

A great example of when you might want access to this information is for a de-
vice that is touch enabled. Touch-screen devices convert click events to touch
events to ensure that the behavior of a site remains consistent. However, this
conversion results in a 300–500ms delay that is consistent across devices. Us-
ing the results of the Modernizr.touch test, you could replace the click events
with touch events:
1.	 if (Modernizr.touch) {

2.		 	 //use touch events

3.	 } else {

4.	 	 //use click events

5.	 }

Going to the server
Feature detection can be useful, but since it’s typically done on the client side,
your ability to reduce the amount of data being downloaded and to customize
the experience of your site is limited. To make any sort of structural changes,
the server needs to know that information before the page is sent to the browser.

Understanding this, James Pearce created modernizr-server, a library that lets
you bring Modernizr results to your server-side code so you can make struc-
tural changes and stop unnecessary resources from being downloaded.

DC Note
Visit GitHub at
https://github.
com/jamesgpearce/
modernizr-server to
download modern-
izr-server.

Chapter 8 • reSS 205

https://github.com/jamesgpearce/modernizr-server
https://github.com/jamesgpearce/modernizr-server
https://github.com/jamesgpearce/modernizr-server

ptg8274462

Using modernizr-server will be familiar to you if you’ve already used the client-
side library. To kick things off, download both modernizr-server and the latest
version of the JavaScript library. Place the JavaScript into a file called modernizr.js,
located in the folder at modernizr-server/modernizr.js/. Then, include the PHP
file in your page:

<?php

include(‘modernizr-server.php’);

?>

From there on, you can access Modernizr test results just as you would with the
JavaScript:
1.	 if ($modernizr-touch) {

2.	 	 //touch is supported

3.	 } else {

4.	 	 //no touch

5.	 }

The first time a visitor accesses the page, the library executes the JavaScript file
and grabs the test results. Those results are then added to a cookie and the page
is reloaded immediately.

On the next page load, the library uses the information in the cookie and, if it
can, places it in a session variable for quick retrieval going forward.

Understanding how it works is important, because there’s a catch here: to run
the test the first time, the page is loaded twice. You’re causing one extra HTTP
request. This is true even though the content isn’t loaded the first time because
the JavaScript is executed immediately. Depending on the network your users
are on, that can be either a minor inconvenience or a fairly large annoyance.

pros of feature deteCtIon

•	 It doesn’t rely on the user agent string.

•	 It allows you to tailor functionality in JavaScript based on feature support.

Cons of feature deteCtIon

•	 JavaScript may be disabled or not supported.

•	 Browsers exaggerate their capabilities. Support is often not as simple as
true or false.

•	 If done on the client side, you can’t perform significant content adapta-
tion. If done the sever side, it requires an extra page load.

IMpleMentInG responsIve desIGn206

ptg8274462

Combining user agent detection
and feature detection
User agent detection and feature detection offer different information and have
their own limitations. By themselves, they’re probably good enough for most
sites. But there might be times where you need something a little more power-
ful. In those cases, you can combine the two.

In a combo approach, you accumulate device profiles over time. You can do
this by storing the results of your tests and associating them with the user agent
string in use.

Let’s say that same Samsung Acclaim is used to access your site. You grab the
user agent string and send a request to WURFL to get the lowdown. You then
take those results and store them in a database.

When the page loads, you run your feature tests. Again, the results of these are
pushed back to the server and stored in the same database.

Bridging the gap with Detector
One helpful tool for bridging the gap between client-side feature detec-
tion and server-side detection is Dave Olsen’s Detector, which can be
found at http://detector.dmolsen.com.

Detector is a browser- and feature-detection library based on modernizr-
server and the popular ua-parser.php, a browser-detection script that
collects general information about the device such as the operating
system or device name. Using this information, Detector can dynamically
create profiles for each user-agent string that accesses a page.

While it doesn’t come with the power of WURFL or DeviceAtlas, it also
doesn’t have to rely on a hefty database of device information. In that
way, it’s a much more nimble solution. For many projects you may find
you don’t need the kind of detail that WURFL supplies. If that is true,
Detector is an excellent solution.

Chapter 8 • reSS 207

http://detector.dmolsen.com

ptg8274462

The next time anyone uses a Samsung Acclaim, you check the database and
find the results associated with that user agent string. It’s a good idea to double-
check this data once again by running some more feature tests the next time
that UA string appears. The first time someone came with that UA string, it
could very well have been someone on a desktop browser who was just spoof-
ing the UA string. It never hurts to double-check.

RESS: The best of both worlds
Server-side detection has some fundamental flaws as well. If you try to use it
independently of responsive design, it’s unscalable. As the landscape of devices
becomes more and more diverse, it will become increasingly difficult for server-
side detection (at least the most common implementation, which is based on
user agent detection) to keep up. You can already see the stretch marks.

The most robust approach is to combine server-side detection with responsive
design. This approach, dubbed RESS, marries the best of both worlds: It pro-
vides one core site (a single set of base templates) to all devices, while allowing
individual components to be rendered server side and tailored to a specific
class of devices.

For example, if an article contained a photo gallery, the article page itself could
be one template served to all devices. The gallery, on the other hand, could be a
component that would be served differently for different devices (say, a touch-
enabled device).

Combining responsive design and server side detection effectively eliminates
most of the of concerns with either approach:

•	 Thanks to responsive design, the layout is device agnostic. This enables
the site to support a broader range of devices than simply building a sepa-
rate site would.

•	 The use of server-side detection lets you reduce the amount of data being
downloaded, saving the user from unnecessarily long download times.

•	 Swapping out components allows you to tailor the experience so that it
best suits the device being used.

IMpleMentInG responsIve desIGn208

ptg8274462

Troubled waters
So far, we’ve been playing in safe waters by testing on iOS, Android, and desk-
top browsers. We’ve been avoiding an unfortunate reality: Not everyone uses
these devices and browsers.

On mobile devices, the most popular browsers in terms of worldwide market
share are Opera Mini and Opera Mobile. The traffic is far from insignificant.
According to an Opera report, 168 million people used Opera Mini in March
2012 to browse 117 billion pages.2 Those are numbers that shouldn’t be ignored.

If you have an iPhone or Android, you can install Opera Mini and test on your
device. Otherwise, navigate to http://implementingresponsivedesign.com/ex/
ch8/ch8-1.html and use the online simulator.

Opera Mobile plays along nicely with the Yet Another Sports Site page, but Opera
Mini is another story entirely. That’s because Opera Mini is a browser whose
goal is to reduce data use and speed things up at all costs. As a result, it uses
some server compression to compress the page before it’s even passed along
to the device.

Opera Mini does support JavaScript, but it runs on the server, not on the device.
As a result, the amount of JavaScript interaction that will work with your page
is a bit more limited.

Let’s fire it up and see just how bad it is.

Thankfully, as a result of the progressive enhancement approach taken with the
page, the site actually looks pretty good.

2 “State of the Mobile Web, March 2012” at http://fr.opera.com/smw/2012/03/

Chapter 8 • reSS 209

http://implementingresponsivedesign.com/ex/ch8/ch8-1.html
http://implementingresponsivedesign.com/ex/ch8/ch8-1.html
http://fr.opera.com/smw/2012/03/

ptg8274462

Erik Runyon
RESS in ThE wild

Erik Runyon lives in Michigan and has been building websites since 1995.
He is a staunch advocate for web standards, semantic markup, the mobile
experience, and data portability. He can be found talking geek on Twitter
(@erunyon) and at his personal blog (weedygarden.net).

We knew early in the ND.edu design process
that we would be employing RESS with the
intent of keeping the mobile experience as
fast and lightweight as possible. The goal of
the redesign was to allow the visitor to experi-
ence the University of Notre Dame through
imagery and in-depth content. For desktops
and tablets, this involved large feature images
that took up the majority of the screen, as
well as pulling several top-level pages onto the
homepage. We had used this long-form style
of content on a series of feature stories that
appeared on the previous iteration of ND.edu.

However, the sheer volume of content and
resources required would have resulted in a
less-than-ideal mobile experience. That’s where
the “server side” of RESS came in.

We used a simple user-agent library to clas-
sify devices into two categories: “mobile”
and “not mobile” (like I said, simple). This
let us compile the correct content on the
server and supply only what was necessary.
We determined what to include by the expe-
rience we were trying to convey. First, since
the long form of the tablet/desktop version
was a combination of top-level pages, we

IMpleMentInG responsIve desIGn210

ptg8274462

could safely omit that content and instead
rely on the top-level navigation to provide
it to mobile users. This greatly reduced the
page size, but still provided easy access to the
content for those users who wanted it.

Next we considered drop-down navigation,
which consisted of large, apron-style drop-
downs with links to internal and external
resources. This functionality did not translate
well to our mobile layout, and since all the
links were available through other navigation,
we decided to not load them for mobiles.

Last, and most troubling from a content
parity standpoint, were the feature images
and related content. The goal was to show
the beauty of Notre Dame’s campus and
provide pertinent information for each
image in a slide-out wing. Our decision to
not include this feature came down to two
things. First, the experience of large imagery
doesn’t translate to small mobile screens,
and second, each location required a great
deal of content that would be detrimental to
the overall mobile experience. So in the end,
we did not include this feature, but instead
sought a way to provide similar content that
played to the strengths of mobile devices:
We presented tour locations with mobile-
friendly content pulled directly from our map
API. The advantage of this was that if we
determined a user’s device was capable of
geolocation, we could ask the user to share

her location and, if she was on campus, show
her the nearby tour locations. We could even
provide features such as walking directions.

We learned from this experience to consider
the strengths and weaknesses of each device
classification, and to then use RESS to
branch the content and experience to provide
the best possible result to each. We were able
to present a rich, immersive experience for
large screens weighing in at 136 requests and
3MB, and a mobile version that made only
23 requests and downloaded a mere 292KB.
This was accomplished with nearly complete
content parity. The advantages of an RESS
approach to web design and development
are pretty obvious.

Chapter 8 • reSS 211

ptg8274462As a result of Opera Mini’s limited JavaScript interaction, the navigation is
expanded by default. It’s ugly, but functional (Figure 8.2).

Honestly, this issue isn’t a deal-breaker. It’s certainly less than ideal, but the
content is accessible and everything is functional. Here’s where you need to
decide how far you’re willing to go. The project requirements, site traffic, and
budget will help you arrive at the correct answer.

For demonstration purposes, let’s fix the issue. We need only watch the resolu-
tion of the device. In the next section we’ll grab that information from WURFL
and adjust the experience accordingly.

Alternatively, you could easily test the resolution using an approach similar to
modernizr-server. We’ll build on this example in a moment though, so you’ll
see the reasoning behind using WURFL.

Figure 8.2 On Opera
Mini, the navigation
is expanded, leav-
ing little room for
content.

IMpleMentInG responsIve desIGn212

ptg8274462

installing wURFl
First, you’ll need to install the WURFL PHP library. You can find it either on the
companion site for this book or at SourceForge (http://wurfl.sourceforge.net).

Once you have the library downloaded and unzipped, the main folder should
be named wurfl-php-version-number. Move that folder into your working
directory for these examples.

If you open the wurfl-php-version-number folder, you’ll find an examples/re-
sources directory. Copy that resources folder into your main working directory.
You can then safely delete the examples folder.

Inside the resources directory, there are two folders: cache and persistence.
Both of these folders need to be writeable by your server.

Also inside the resources directory is a wurfl.zip. This is where the magic hap-
pens. The zip file contains the wurfl.xml file that houses all the device informa-
tion. You can also download this file by itself, in case you want to update the
XML file periodically to keep up to date with all the changes.

Licensing WURFL
The WURFL API is available under the Affero General Public License v3
(AGPL). This means that if you comply with the AGPL restrictions, you
can use the WURFL APIs free of charge.

The AGPL license is a little tricky. For example, running the WURFL APIs
on a server counts as distribution. This, in turn, means that anything you
create using the APIs would need to be licensed as open-source as well.
If the AGPL license is too restrictive for your project, you can buy a com-
mercial license for WURFL.

The WURFL XML database is licensed separately and can only be used
in conjunction with the WURFL API.

DR Tip
WURFL also offers a
cloud service (www.
scientiamobile.com/
cloud), which is
simpler to get up and
running with. We
won’t use it in the
book because to play
along you would
need to register for a
paid account, but it’s
worth checking out.

Chapter 8 • reSS 213

www.scientiamobile.com/cloud
www.scientiamobile.com/cloud
www.scientiamobile.com/cloud
http://wurfl.sourceforge.net

ptg8274462

Configuration
Now back in the main working directory, create a file named wurfl_config.php
and place the following code inside:
1.	 <?php

2.	 // Enable all error logging while in development

3.	 ini_set(‘display_errors’, ‘on’);

4.	 error_reporting(E_ALL);

5.	

6.	 $wurflDir = dirname(__FILE__) . ‘/wurfl-php-1.4.1/WURFL’;

7.	 $resourcesDir = dirname(__FILE__) . ‘/wurfl-php-1.4.1/resources’;

8.	

9.	 require_once $wurflDir.’/Application.php’;

10.	

11.	 $persistenceDir = $resourcesDir.’/storage/persistence’;

12.	 $cacheDir = $resourcesDir.’/storage/cache’;

13.	

14.	 // Create WURFL Configuration

15.	 $wurflConfig = new WURFL_Configuration_InMemoryConfig();

16.	

17.	 // Set location of the WURFL File

18.	 $wurflConfig->wurflFile($resourcesDir.’/wurfl.zip’);

19.	

20.	 // Set the match mode for the API (‘performance’ or ‘accuracy’)

21.	 $wurflConfig->matchMode(‘performance’);

22.	

23.	 // Setup WURFL Persistence

24.		 $wurflConfig->persistence(‘file’, array(‘dir’ => $persistenceDir));

25.	

26.	 // Setup Caching

27.	 $wurflConfig->cache(‘file’, array(‘dir’ => $cacheDir, ‘expiration’ =>

36000));

28.	

29.	 // Create a WURFL Manager Factory from the WURFL Configuration

30.	 $wurflManagerFactory = new WURFL_WURFLManagerFactory($wurflConfig);

31.	

32.	 // Create a WURFL Manager

33.	 /* @var $wurflManager WURFL_WURFLManager */

34.	 $wurflManager = $wurflManagerFactory->create();

IMpleMentInG responsIve desIGn214

ptg8274462

Meet DeviceAtlas
WURFL isn’t the only game in town. There are several other options, with
DeviceAtlas being the most noteworthy.

DeviceAtlas, started in 2008, is a commercial device database. Device-
Atlas aggregrates information from carriers, manufacturers, and even
from WURFL. DeviceAtlas tends to be a little more focused on mobile
web-specific concerns than WURFL, so while there’s some overlap in
capabilities, there are some notable differences as well.

For example, WURFL has a whole category of capabilities dealing
with downloadable objects like wallpaper, ringtones, and screensavers.
DeviceAtlas does not. On the other hand, DeviceAtlas has an entire cat-
egory devoted to HTML5-related features such as canvas and application
cache, whereas WURFL does not.

WURFL and DeviceAtlas both have a high level of quality and are
frequently updated, so your decision will ultimately come to down
to a combination of project requirements and personal preference.

Let’s walk through that config file.

Lines 3–4 enable PHP error reporting. This setting isn’t required for WURFL
to run, but error reporting can be helpful when working on your development
site. Make sure to pull those lines on your production site.

Lines 6–7 point to the WURFL directory and the resources directory you
just set up.

Line 9 includes the primary WURFL application file. Lines 11–12 point to the
persistence and cache directories. The cache directory stores the user agents
that have been detected in order to speed up repeat requests.

Line 15 instantiates the configuration object so we can tell it where everything re-
sides. Line 18 tells the configuration object where the main WURFL database lives.

Line 21 sets the matchMode. There are two options: performance and accuracy.
In performance mode, desktop browsers are simply returned as generic web
browsers instead of attempting to identify them in any greater detail. Most
of the time that’s sufficient.

Chapter 8 • reSS 215

ptg8274462

Lines 24 and 27 set the persistence and cache methods. In this case, they tell
WURFL to use file storage, where the directory resides, and, in the case of the
cache folder, how long the cache remains valid.

On lines 30 and 34, the configuration file creates the WURFL manager object
that will allow you to identify devices and return their capabilities.

detecting capabilities
With these variables in place, you’re ready to include WURFL into the Yet
Another Sports Site page.

Add the following lines to the top of the page:
1.	 <?php

2.	 // Include the configuration file

3.	 include_once ‘./wurfl_config.php’;

4.	 // This line detects the visiting device by looking at its HTTP Request

($_SERVER)

6.	 $device = $wurflManager->getDeviceForHttpRequest($_SERVER);

7.	 ?>

The code snippet includes the configuration file and then passes the server
variables to WURFL. WURFL then identifies the device and returns the capa-
bilities information.

You can now query WURFL to see if it’s a small screen device using the
resolution_width capability:
1.	 if ($device->getCapability(‘resolution_width’) <= 480) {

2.	 	 $smallScreen = true;

3.	 } else {

4.	 	 $smallScreen = false;

5.	 }

The example above checks the resolution width of the device to see if it’s be-
low 480px. The first line uses the getCapability method, which allows you
to get the value of a specific capability from WURFL. In this case, WURFL
returns the resolution width of the device. If it’s less than or equal to 480px,
the $smallScreen variable you’ve created will be set to true. If not, it will be
set to false.

DD Server variables
PHP stores informa-
tion about headers
(including the user
agent string), paths
and locations in a
$_SERVER array.

IMpleMentInG responsIve desIGn216

ptg8274462

Armed with the $smallScreen variable, you can now adjust what gets passed to
the browser for the navigation:
1.	 <?php if ($smallScreen) { ?>

2.	 	 <a href=”#bottom” class=”nav-collapse active”

 id=”nav-collapse”>Menu

3.	 <?php } else { ?>

4.	 	 Menu

5.	 	 <ul class=”nav” id=”nav”>

6.	 	 	 <li class=”active”>Football

7.	 	 	 Baseball

8.	 	 	 Soccer

9.	 	 	 Tennis

10.	 	 	 Ice Soccer

11.	 	 	 Basketball

12.	 	

13.	 <?php } ?>

If the $smallScreen variable is true, a Menu link that links directly to the footer
navigation will be provided to the device. If not, the full navigation will be
passed along.

This eliminates the navigation issue with Opera Mini. Now, on a small-screen
device, the Menu button will simply bring the user directly to the bottom of
the screen for navigation (Figure 8.3).

Figure 8.3 Thanks
to some very simple
server-side detection,
the navigation is left
for the bottom of the
screen, leaving plenty of
room for the content.

Chapter 8 • reSS 217

ptg8274462

Here, user agent detection is used to enhance, not to exclude. If the device is
below 480px wide, everything still functions, just in a slightly different way. The
user experience isn’t negatively affected. Since we built the page using progres-
sive enhancement, it will still function even if a larger screen device doesn’t
collapse the menu. No matter the situation, the navigation will be useful and
small screens won’t be filled up entirely with navigation.

This is a great example of why you may want to use server-side detection from
time to time. A better experience will be provided to devices that don’t support
the drop-down navigation and more importantly, this optimization doesn’t ex-
clude anyone from enjoying the site. Using server-side detection doesn’t have
to mean exclusion.

addInG feature deteCtIon

You can make this approach more foolproof by adding some feature detection.
While the screen resolution provided by WURFL is helpful as a base, it may
not tell the full story. For a desktop browser, WURFL can’t tell you the actual
width the user has the browser set to: it could be very narrow.

As we discussed in Chapter 5, “Planning,” some new devices can project their
display. Likewise, it’s possible to hook up an Android smartphone to an exter-
nal display using an OS provided by Ubuntu. For these situations, WURFL’s
reported resolution will be less accurate than detecting the width via JavaScript.
Server-side detection makes sense for the first page load, but after that you should
grab the width using JavaScript and use that value on subsequent page loads.

Start by creating functions to read and write cookies in JavaScript and add
them to the Utils object.
1.	 var Utils = {

2.	 	 createCookie : function(name, value, days) {

3.	 	 	 if (days) {

4.	 	 	 	 var date = new Date();

5.	 	 	 	 date.setTime(date.getTime() + (days*24*60*60*1000));

6.	 	 	 	 var expires = “; expires=”+date.toGMTString();

7.	 	 	 }

8.	 	 	 else var expires = “”;

9.	 	 	 document.cookie = name + “=” + value + expires + “; path=/”;

10.	 	 },

11.	 	 readCookie : function(name) {

12.	 	 	 var nameEQ = name + “+”;

13.	 	 	 var ca = document.cookie.split(‘;’);

DC Note
These functions were
originally created by
Peter-Paul Koch and
can be found on his
site (http://www.
quirksmode.org/js/
cookies.html).

IMpleMentInG responsIve desIGn218

http://www.quirksmode.org/js/cookies.html
http://www.quirksmode.org/js/cookies.html
http://www.quirksmode.org/js/cookies.html

ptg8274462

14.	 	 	 for (var i = 0; i < ca.length; i++) {

15.	 	 	 	 var c = ca[i];

16.	 	 	 	 while (c.charAt(0)==’ ‘) c = c.substring(1, c.length);

17.	 	 	 	 if (c.indexOf(nameEQ) == 0) {

18.	 	 	 	 	 return c.substring(nameEQ.length, c.length);

19.	 	 	 	 }

20.	 	 	 };

21.	 	 return null;

22.	 	 },

23.	 	 ...

24.	 }

With those utility functions in place, it’s time to create a Utils.tests object,
which will contain any feature tests you create. For now, you need only test the
width, but building it this way allows for easy scaling as more features get tested.
1.	 var Utils = {

2.	 	 ...

3.	 	 tests : {

4.	 	 	 getWidth: function(){

5.	 	 	 	 return (window.innerWidth > 0) ? window.innerWidth :

 screen.width;

6.	 	 	 }

7.		 	 }

8.	 }

In the above snippet, the getWidth function is created and added to the Utils.
test object. On line 5, the function returns either the window.innerWidth prop-
erty, or if that’s not a valid value, it returns the screen.width property.

With these functions in place, you can add some code to the window.onload
function to run the test and store it in a cookie for later use:
1.	 var features = {};

2.	 //check for cookie

3.	 if (Utils.readCookie(‘features’)) {

4.	 	 features = Utils.readCookie(‘features’);

5.	 	 features = JSON.parse(features);

6.	 } else {

7.	 	 //test width

8.	 	 features[‘width’] = Utils.tests.getWidth();

9.	 	 //save features

10.	 	 Utils.createCookie(‘features’, JSON.stringify(features));

11.	 }

Chapter 8 • reSS 219

ptg8274462

Line 1 creates the features object where the results of any feature tests
are stored.

Line 3 checks to see if the features cookie exists. If it does, then the value is
stored in the features object and JavaScript’s JSON.parse() function turns the
value into an object.

If the features cookie doesn’t exist, line 8 tests the width and then stores the
value as a string in a cookie named ‘features’.

Finally, you have to tell the server-side code to look for the features cookie and
get the width from there if it can:
1.	 if (isset($_COOKIE[‘features’])) {

2.	 	 $feature = json_decode($_COOKIE[‘features’]);

3.	 }

4.	 if ($feature->width) {

5.	 	 $width = $feature->width;

6.	 } else {

7.	 	 $width = $device->getCapability(‘resolution_width’);

8.	 }

Line 1 checks to see if the cookie has been set. If it has, the value is stored in the
$feature variable (line 2). Then, on line 4, the $width variable is either passed
the value of the feature width test, if it exists, or the WURFL width test.

Now you can tell the code to use the $width value to determine if the device
has a small screen:
1.	 if ($width <= 480) {

2.	 	 $smallScreen = true;

3.	 } else {

4.	 	 $smallScreen = false;

5.	 }

With that code in place, the first time a page loads, the WURFL screen reso-
lution will be used to determine the width. For subsequent loads, assuming
JavaScript is supported, the feature test will be used instead.

IMpleMentInG responsIve desIGn220

ptg8274462

Making calls
The folks at Yet Another Sports Site have decided to start a talk show where their
loyal listeners and readers can call in with questions and comments. They want
to add an 800 number to the sidebar for people to call.

Being the clever developer that you are, you think, hey, if someone accesses
this with a phone, they should be able to make a call just by clicking on that
number. (Really, it’s true. These mini-computers actually have a phone in
them! Who knew?)

Many devices will try to recognize a phone number via pattern recognition, but
it’s not always perfect. There’s actually a special tel: link that many devices
support that lets you tell the device that the link is for a phone number:

1-800-555-5555

This works great on mobile devices that support the format, but as usual, things
aren’t that easy. As it turns out, desktop browsers are pretty stupid about these
sorts of things. Some make the text look like a link, but the link won’t actually
do anything. Others, like Safari, try to open the link as if it were a URL. Some
mobile browsers don’t support the format and instead support the older Wire-
less Telephony Applications Interface (WTAI) format:

1-800-555-5555

Once again, a little server-side detection can help solve the problem.

First, include the talk show blurb, just above the “Related Headlines” section.
1.	 <aside>

2.	 	 <section class=”talkshow”>

3.	 	 	 <h2>We’re talking sports!</h2>

4.	 	 	 <p>1-800-555-5555</p>

5.	 	 </section>

6.	 	 <section class=”related”>

7.		 	

Then, add a few styles to make the phone number easy to see and touch.
(The call class will be used later on the paragraph if no link is included.)
1.	 .talkshow a, .call{

2.	 	 font-size: 1.5em; /* 24px/16px */

3.	 	 padding: .416666667em 0 .416666667em 50px; /* 10px/24px */

4.	 	 background: url(../images/phone.png) left center no-repeat;

5.	 }

Chapter 8 • reSS 221

ptg8274462

Now, you’ll need to tap into WURFL to decide whether it should be a link
or simply state the number. Two capabilities in particular are useful here:
has_cellular_radio and xhtml_make_phone_call_string.

The has_cellular_radio capability reports whether the device has cellular
technology. It’s important to note that this doesn’t guarantee that the device
is a phone. A Kindle, for example, has a data-only cellular connection. The
has_cellular_radio capability gets close though. The xhtml_make_phone_call_
string capability returns the method that can be used for initiating voice calls.

By combining these two properties, you can detect whether or not a device is
capable of making a phone call by adding the following lines to the PHP code
at the top of the page:
1.	 if ($device->getCapability(‘has_cellular_radio’) === ‘true’) {

2.	 	 if ($device->getCapability(‘xhtml_make_phone_call_string’)

 !== ‘none’) {

3.	 	 	 $wireless = true;

4.	 	 	 $method = $device->getCapability(‘xhtml_make_phone_call_

 string’);

5.	 	 } else {

6.	 	 	 $wireless = false;

7.	 	 }

8.	 } else {

9.	 	 $wireless = false;

10.	 }

The first line checks to see if the device has cellular technology. If it doesn’t,
$wireless is set to false and nothing further happens. If it is wireless, it next
checks to see if the xhtml_make_phone_call_string is none. If it is, there’s no
reason to include the link to make a call, so you can safely set $wireless to false.
Otherwise, $wireless is set to true and the xhtml_make_phone_call_string
string is passed to the $method variable so you can use it later in the page.

Next, wrap the link that’s currently in your HTML inside a PHP if/else state-
ment, like so:
1.	 <?php if ($wireless) { ?>

2.	 	 <p><a href=”<?php echo $method; ?>+18005555555”>1-800-555-5555

 </p>

3.	 <?php } else { ?>

4.	 	 <p class=”call”>1-800-555-5555</p>

5.	 <?php } ?>

IMpleMentInG responsIve desIGn222

ptg8274462

If $wireless is true, the link is included. The $method is echoed out to ensure
that the proper syntax is being used. If $wireless is false, the number is still
displayed but the link is removed so you won’t have to worry about any of the
odd issues that tend to arise with tel: links in desktop browsers (Figure 8.4).

Optimizing for touch
By using carefully applied server-side detection, we’ve enhanced the experience
for even more devices. Let’s take it a step further and enhance the experience
for touch-enabled devices. In particular, the links in the sidebar for the related
headlines are far too small for a touch display. Apple suggests a touch target of
at least 44px in height, so those links could use a bit more padding.

While feature detection for touch is quite popular, there’s an important caveat:
touch feature detects are checking for touch event support, not necessarily
whether or not the device has a touch screen. For example, WebOS phones
have touch-enabled screens, but they don’t support touch events. Using fea-
ture detection, the test would fail and those devices would receive none of the
special styling for touch devices.

WURFL has a pointing_method capability that will return touchscreen if the
device has a touch-enabled display. Unfortunately, there’s a caveat here as well:
a touch-enabled display does not mean touch events are supported.

The point is that you need to use the right tool for the job. If you want to alter
the styles that are served for a touch-enabled device, use server-side detection.
If you want to alter the JavaScript, use feature detection.

To get a hook to alter the styles for touch screen devices, just echo the
pointing_method capability as a class on the body element:

<body id=”top” class=”<?php echo $device->getCapability

(‘pointing_method’); ?>”>

Now, if the device has a touchscreen, the body will have a class of touchscreen.

Figure 8.4
On devices that can
make phone calls,
the phone number
will be a link mak-
ing it easy to place a
call (left). On others,
such as desktop
browsers, the phone
number will display
as text (right).

Chapter 8 • reSS 223

ptg8274462

To make sure the related headline links are touch-screen friendly, they need to
be at least 44px tall. Currently, the font size is 16px and the line height is 24px
so we need another 20px. We can get this by adding 10px padding to the top
and bottom of the links. The target/context = result formula from Chapter 2,

“Fluid Layouts,” gives us the appropriate em values to use:
1.	 .touchscreen .related a{

2.	 	 display:block;

3.	 	 padding: .625em 0;

4.	 }

Let’s apply the same styles to the “More in Football” links.
1.	 .touchscreen .more-stories a{

2.	 	 display:block;

3.	 	 padding: .625em 0;

4.	 	 border-bottom: 1px dotted #999;

5.	 }

For the “More Stories” section, the images are loaded in at the 37.5em break-
point (600px) so at that point the bottom border is unnecessary and looks a
little out of place (Figure 8.5). You can easily override that property by adding
the following styles inside the media query:

.touchscreen .more-stories a{

 border-bottom: 0;

}

DC Note
display:block is
needed here to make
sure the link receives
the padding.

Figure 8.5 On touch
screen devices (right)
the links are given a
little extra padding.

IMpleMentInG responsIve desIGn224

ptg8274462

Now if you load your page on a touch-enabled device, you’ll see those links
have much friendlier touch points. On a device that doesn’t have a touch dis-
play, the sizes remain as they were.

touCh-frIendly JavasCrIpt

Visually, the site is now ready to go for touch-enabled devices. But there’s still
one more adjustment to make.

Currently, if a device with a resolution of greater than 480px has a touch-
enabled display, the navigation drop-down is triggered by a click event. Touch
devices are smart enough to make use of the click event, but not without a
penalty of about 300–500ms. That might not sound like much but it can have
a considerable impact on how visitors perceive your site.

In multiple studies done since the 1960s, 100ms was found to be the limit at
which the user feels that the system is acting instantaneously to their input.3

Anything over that and it starts to feel disconnected.

If the device supports touch events, it’s much better to use those and provide
that instantaneous feedback. Remember: You can’t rely on WURFL here. The
pointing_method capability tells you if the screen is touch-enabled, but not if
touch events are supported. You need to use feature detection for that.

Detecting whether or not the device has touch event support is fairly simple:
hasTouch = ‘ontouchstart’ in window || ‘createTouch’ in document;

The above line of code checks for two different touch-event related properties.
If either one exists, the device likely has touch support enabled and you can
safely use the touch events.

Unfortunately, because touch events allow for complex gestures, there’s no
simple, native replacement for the onclick event we’re currently using. Thank-
fully, others have already tackled this.

For the Yet Another Sports Site page, you can use Alex Gibson’s Tap.js plug-in,
which is freely available at https://github.com/alexgibson/tap.js on GitHub.
To save an extra HTTP request, grab the code from tap.js and place it in the
top of yass.js.

Tap.js uses feature detection to determine if touch events are supported. If they
are, it will use the touch events; if not, it falls back to the click event.

3 “Response Times: The 3 Important Limits” at www.useit.com/papers/responsetime.html

Chapter 8 • reSS 225

www.useit.com/papers/responsetime.html
https://github.com/alexgibson/tap.js

ptg8274462

To use it, replace the collapse.onclick function:
1.	 collapse.onclick = function() {

2.	 	 Utils.classToggle(nav, ‘hide’);

3.	 	 return false;

4.	 };

with the following code:
1.	 myTap = new Tap(collapse);

2.	 collapse.addEventListener(‘tap’, function(){

3.	 	 Utils.classToggle(nav, ‘hide’);

4.	 	 return false;

5.	 }, false);

Line 1 creates a new Tap object named myTap. Lines 2–5 tell the browser to
listen for a tap event on the collapse button. When a tap event fires, the
classToggle function (lines 3–4) fires.

wrapping it up
There’s a lot of discussion that pits responsive design and server-side detection
against each other, but in reality, neither solution is complete by itself. The
best opportunities for supporting many devices come with the careful applica-
tion of both.

User agent detection is incredibly powerful, but you have to apply it with care.
Enhance the experience for visitors, don’t exclude them.

Feature detection is a popular choice for developers and can be done on the
client side or, with the help of a clever hack, on the server side. It’s not a fool-
proof approach, however. False positives do occur and if you want to run it on
the server, an extra page load is required.

WURFL is an incredibly helpful library for performing device detection. With
over 500 capabilities at your disposal, it gives you incredible power over the
user experience.

Carefully consider the capabilities of devices and how the experience can be tai-
lored for them. By swapping out components and styles, you can easily optimize
for touch screen devices, low-end devices, and devices with phone capabilities.

In the next chapter, we’ll build on this discussion and start to push beyond
responsive layouts to build responsive experiences.

IMpleMentInG responsIve desIGn226

ptg8274462

Chapter 9

Responsive
expeRiences

always in motion is the future.
—Yoda, Star WarS epiSode V:

the empire StrikeS BaCk

ptg8274462

We humans are good at many things, but anticipating the future is not one of
them. Our vision of what is to come is clouded by our past experiences. It can
be hard to let go of the constraints of mediums we’ve worked in before when
a new medium presents itself.

Evidence of this behavior is easy to find. When we got television, the first shows
were radio shows put on a screen. They featured essentially the same content a
radio show might—with people reading into microphones from a script. It took
awhile before people started creating new kinds of content to watch.

Even our naming conventions tell us just how hard it is for us to separate
ourselves from the past. The cinema used to be commonly referred to as the

“moving pictures.” It was a comfortable, but inaccurate, description.

You see the same thing with the Web. Much of web design was transitioned
from print. We even use the terminology, words like “page” and “the fold.” But
our obsession with layout is causing us to miss out on much of the potential
that the Web offers. The Web is an interactive medium. If we’re going to capital-
ize on its potential, we have to look beyond its visual appearance.

In this chapter, we’ll consider what it means to build a responsive experience:

•	 How to think of responsive design as a series of sensors

•	 How to adjust a site for different network speeds and data limitations

•	 Why context is important in design

•	 How device APIs can help you create immersive, personalized
experiences

A system of sensors
Ethan Marcotte cited a movement called “responsive architecture” as the inspi-
ration for responsive web design.1 In responsive architecture, walls can bend
and flex as people draw near. That’s layout.

1 Ethan Marcotte, Responsive Web Design (A Book Apart: 2011)

implementing reSponSiVe deSign228

ptg8274462

But responsive architecture wouldn’t be very exciting if it stopped there.
Rooms can also be adjusted for lighting and temperature. Glass can become
more opaque to provide privacy. It’s not just the layout of the room that re-
sponds to its occupants; the environment and experience adapt as well.

If being responsive is truly about embracing the potential of the Web, then
the discussion is much broader than layout. Instead, being responsive is about
creating a personal, responsive experience that adapts to the needs and envi-
ronment of the user as well as the capabilities and constraints of the device.

Yes, sites should respond to the screen size of the device, but that may be the
least interesting aspect of what we can do.

In a blog post, Mark Boulton talks about responsive design comprising three
distinct things:2

Sensors

Things that sense the environment (not the weather, but the stuff around it—
whatever it is).

Systems

A system that takes the information from the sensors and tells the actuators
what to do.

Actuators

The things that actually do the moving. The motors, the CSS, the cables.

If we view responsive design in this way, then it becomes a matter of under-
standing what “sensors” are available. Suddenly, it’s easy to see that the discus-
sion must go beyond adapting to screen size. A truly responsive experience also
takes these elements into account:

•	 Network

•	 Context

•	 Capabilities

2 “A Responsive Experience” at www.markboulton.co.uk/journal/comments/a-responsive-experience

Chapter 9 • responsive experienCes 229

www.markboulton.co.uk/journal/comments/a-responsive-experience

ptg8274462

Device experiences
Another way of looking at the topic of different experiences for differ-
ent devices was discussed by Luke Wroblewski in his blog post “Device
Experiences & Responsive Design.”3

In Luke’s post, he talks about the need to create appropriate interfaces
for each classification of devices: to create different device experiences.
He mentions three categories in particular to consider:

•	 Usage/posture

•	 Input methods

•	 Output/screen

These three categories line up well with the three (network, context and
capabilities) discussed in the following section. However you choose to
categorize these different devices, the takeaway is the same: these differ-
ent devices will have different requirements for layout, interactions and
content hierarchy. Media queries, fluid layouts and fluid images are a
start, but they’re not enough.

network3

The quality and speed of a network can have a tremendous impact on the qual-
ity of the user experience. As we discussed in Chapter 4, “Responsive Media,”
a site’s performance seriously affects how the user interacts with it.

Unfortunately, not all networks are created equal. There’s a big difference be-
tween a high-speed wired connection and a slow cellular network. But the type
of network is just the start: network performance can be affected by location,
the number of people using the network, the weather, the carrier—there isn’t
much in the way of consistency.

3 Device Experiences & Responsive Design at https://developers.facebook.com/html5/blog/post/6/

implementing reSponSiVe deSign230

https://developers.facebook.com/html5/blog/post/6/

ptg8274462

There may also be data limitations. As the amount of data traffic increases on
mobile networks, more and more carriers are putting data caps on plans and
penalizing people who exceed certain limitations.

To be clear, you can’t make assumptions about the performance of a network
based on the device. It’s true that mobile devices are more likely to be connected
to a slow connection and that these devices are also often less powerful than their
desktop brethren. It is also true, however, that mobile devices could be connected
to a high-speed wireless connection while a laptop could be connected to a slow
mobile network via tethering. The type of device is not enough.

A site that is truly responsive adjusts itself to accommodate for slower networks
or data caps.

What can we do?
Start by always striving for the best performance you can provide, regardless
of the connection type or the device in question. Users have spoken: perfor-
mance is not an option, nor is it a feature; it’s a requirement.

You can try to further optimize the experience by gathering a little information
about the network. Let’s look at a couple of ways to do this.

teSt load an image

One method to test the speed of the network is to send a request for a small
image and measure the time it takes for the request to be completed.

A rudimentary version of this kind of test is shown below:
1.	 var testImg = document.createElement(‘img’);

2.	 testImg.onload = function() {

3.		 	 endTime = (new Date()).getTime();

4.	 	 var duration = (endTime - startTime) / 1000;

5.		 	 //if duration is over a certain amount, then load small images

6.	 	 //else load large images

7.	 }

8.	 startTime = (new Date()).getTime();

9.	 testImg.src = ‘http://mysite.com/myimage.gif’;

The above snippet is simplified, but you get the point. You create an image
using JavaScript and, before setting the src, record the starting time. When
the src is set, the image automatically starts downloading.

Chapter 9 • responsive experienCes 231

ptg8274462

Once the image is loaded, the onload function is called. An end time is re-
corded and a duration is determined. Based on this duration, you can decide
if the network is fast enough to provide heavier resources, such as high-resolu-
tion images. This method is not particularly accurate, though it might suffice
for a quick Boolean test of “is it high speed or is it not.” For many sites, you’ll
need to use a test that is a bit more reliable.

netWork information api

Another method of testing connection type is to use the Network Information
API, which lets you query the browser to determine the type of connection the
device is on. Android currently supports an older, limited version of the specifi-
cation that only allows you to determine the kind of network in use. Accessing
this information is simple:

var connection = navigator.connection;

The connection object, as implemented by Android since version 2.2, now
contains the following properties:
1.	 {

2.	 	 “type”: “1”,

3.	 	 “UNKNOWN”: “0”,

4.	 	 “ETHERNET” : “1”,

5.	 	 “WIFI”: “2”,

7.	 	 “CELL_2G”: “3”,

8.	 	 “CELL_3G”: “4”

9.	 }

The type property tells you which type of connection the device is currently
using. In this case, the type is 1 (line 2). Looking at the rest of the properties,
you can see that 1 means the device is connected via an Ethernet connection
(line 4).

With this information, you could decide to serve up a lower-resolution image
when, say, the network is a CELL_2G or CELL_3G network.

This implementation does leave a lot of room for error. A 3G network could be
fast and a Wi-Fi network could be slow. It would be much better to have access
to the actual bandwidth.

Thankfully, there’s an updated version of the specification that allows for
more information. The only currently running browser that implements the
new specification is Firefox 12+. However, the nightly builds of WebKit also

implementing reSponSiVe deSign232

ptg8274462

support the specification, so it’s safe to expect that some version of it will make
its way into Safari, Chrome, iOS, and Android before too long.

To account for these different levels of support, we have to check a few more
prefixed values. Other than that, the use is again straightforward:
1.	 var connection = navigator.connection || navigator.mozConnection ||

navigator.webkitConnection;

2.	 //check the bandwidth

3.	 alert(navigator.connection.bandwidth);

4.	 //is it metered

5.	 alert(navigator.connection.metered);

The new version of the specification removes the type property and adds the
much more useful bandwidth and metered properties.

The bandwidth property returns one of three values:

•	 0 if the device is offline

•	 ‘Infinity’ if the bandwidth is unknown

•	 An estimation of the current bandwidth in megabytes per seconds
(MB/s)

The metered property returns true if the connection is metered (limited by the
provider) and false otherwise.

This information is significantly more useful. The bandwidth approximation is
a far better judge of network speed than the type. Knowing whether the con-
nection is capped, or metered, can help guide decisions about implementing
potentially data-heavy operations.

The new specification also lets you set a function to watch for when the net-
work information changes.
1.	 function changed(){

2.	 	 alert(‘The bandwidth is now: ‘ + navigator.connection.bandwidth);

3.	 }

4.	 navigator.connection.addEventListener(‘change’, changed, false);

In the above code, when the connection information changes (line 4), the
changed() function is called, alerting the new bandwidth information.

As support for this API improves, developers will be able to make decisions
about loading images appropriately and performing data-heavy operations
such as polling only when the user’s connection can support it.

Chapter 9 • responsive experienCes 233

ptg8274462

context
Context, particularly as it relates to mobile users, is a murky topic that has been
the subject of much debate. Unfortunately, many people are tempted to define

“context” narrowly, using it to refer only to technology.

In no area is that more apparent than with mobile devices. “Mobile” is a terribly
loaded word. It brings with it years of historical assumptions that are no longer
true. When we think of the context of mobile use, often the first thing that
comes to mind is a user on the go. He isn’t doing recreational browsing; his
search is driven by a specific task. He doesn’t have much time to get the infor-
mation, so he wants it quickly.

For a little while, it seemed that this interpretation of mobile worked. One
word encompassed both the context of use and the context of the technology.
We assumed the context of the environment and the task based on the device
that the user had in hand.

We got away with this because, well, at first mobile web use was painful. Ago-
nizingly, bite-your-fingernails painful. Networks were slow, methods of input
were clunky and extremely limited, and devices could only display a mono-
chromatic textual representation of a site.

That’s simply no longer the case. The rise of smartphones—in particular the
iPhone and Android devices—have shown that mobile web browsing can actu-
ally be enjoyable. These devices are capable of delivering a full experience. As
such, the context is much more variable.

People use them at home, relaxing in their favorite La-Z-Boy (Figure 9.1). They
use them while traveling, over slow mobile networks. The context of use is fuzzy.

A quarterly report for Compete in 2010 showed just how much the context of
use varied for smartphones:4

•	 84 percent use their phones at home

•	 80 percent use their phones during miscellaneous downtime

•	 76 percent use their phones while waiting in line for appointments

4 “Smartphone Owners: A Ready and Willing Audience” at http://blog.compete.com/2010/03/12/
smartphone-owners-a-ready-and-willing-audience

DD Context
The circumstances
(physical, environ-
mental, behavioral,
social, or otherwise)
in which a device
is used.

implementing reSponSiVe deSign234

http://blog.compete.com/2010/03/12/smartphone-owners-a-ready-and-willing-audience
http://blog.compete.com/2010/03/12/smartphone-owners-a-ready-and-willing-audience

ptg8274462

•	 69 percent use their phones while shopping

•	 64 percent use their phones at work

•	 62 percent use their phones while watching TV

•	 47 percent use their phones during their commute to work

Another study, performed by Google in 2011, demonstrated that stats can go
too far by revealing that 39 percent of people use their mobile devices in the
bathroom!5 This means two things: firstly, 61 percent of people lie and secondly,
these devices can, and will, be used everywhere.

The problem with most “contextually” optimized experiences today is that
we don’t have enough information to accurately infer a user’s intent. Context
is difficult, intent is ridiculously hard. To accurately infer intent, a number of
different criteria could come into play:

5 “The Mobile Movement” at www.thinkwithgoogle.com/insights/library/studies/the-mobile-movement/

Figure 9.1 Phones
are no longer just
being used when

“on the go.” The
“mobile” context isn’t
as easily defined as it
once was.

Chapter 9 • responsive experienCes 235

www.thinkwithgoogle.com/insights/library/studies/the-mobile-movement/

ptg8274462

•	 Behavioral history

•	 Location

•	 Time

•	 Weather

•	 Nearby locations

•	 Proximity of friends, crowds, or enemies

•	 User movement

Mark Kirby of Ribot wrote, “Mind reading is no way to base fundamental content
decisions.”6 He’s exactly right. We need to be careful how much we try to tailor
the experience based on our current limited knowledge of context. Remember,
we’re not in control: the user is. As Giles Colborne says, “You can’t control the
environments where people use your software. You have to design it to fit.”7

Despite all this murkiness, context is still relevant and can be very powerful if
you have reliable information. Consider the classic example of a website for a
museum. If you can accurately determine that a person is accessing your site
from within the museum, use that information to provide a more optimized
experience. Focus more on the information a visitor would need on-site, such
as maps and tours, and less on information such as tickets and planning a trip.

As someone who reads quite a bit of science fiction, I find context to be an in-
credibly important conversation. In those books, a common refrain is a piece
of technology that is ubiquitous. It adapts based on the determined context to
provide an experience that is truly responsive to the users’ needs—no matter the
situation. Portable devices, in particular mobile phones, have this kind of poten-
tial. If we don’t continue to experiment with context, we sell the technology short.

Classifying context
Start by expanding the way you think of context. Rather than defining it as

“mobile” (which isn’t really helpful to anyone), try thinking of it as a composite
picture or in terms of user posture.

6 “The Mobile context” at http://mark-kirby.co.uk/2011/the-mobile-context/
7 Giles Colborne, Simple and Usable Web, Mobile, and Interaction Design (New Riders, 2010)

implementing reSponSiVe deSign236

http://mark-kirby.co.uk/2011/the-mobile-context/

ptg8274462

CompoSite piCture

In a 2007 presentation, Nick Finck suggested viewing context as a combination
of four different aspects:8

•	 User

Who is your user? What are his needs?

•	 Task

What task is the user trying to accomplish?

•	 Environment

What is the user’s environment like, in both physical and social terms?

•	 Technology

What technology does the user have and what is that technology capable of?

Considering context in terms of these four different aspects creates a more
accurate composite picture of the ways in which your site will be used. It also
shows just how complicated context can be: there is no neat “mobile” context
just as there is no “desktop” context. The context is not defined by any one
criterion, but by a combination of several.

uSer poSture

Another helpful consideration is to think in terms of posture. For example, to
guide decisions about how the user experience should be optimized, Netflix
considers whether the user is stationary, on the go, leaning back, or sharing the
experience with others.

Again, thinking of the context of use in this way helps you to more clearly de-
sign different user experiences. You may not be able to predict a user’s posture,
but you can certainly keep each possibility in mind when designing.

Observe and research
When talking about context, people tend to focus on all the little bits of data
that are floating around and try to determine context programmatically. That’s
all fine and good: there is value in gathering contextual clues through sensors

8 “Contextual Web” at www.slideshare.net/nickf/contextual-web

Chapter 9 • responsive experienCes 237

www.slideshare.net/nickf/contextual-web

ptg8274462

and the like. But at the end of the day, there’s no replacement for observation.
As Adam Greenfield stated in his book, Everyware:

If nothing else, it would be wise for us all to remember that, while our informa-
tion technology may be digital in nature, the human beings interacting with it
will always be infuriatingly and delightfully analog. 9

Research should combine quantitative methods (such as analytics) and quali-
tative methods (such as interviews) to be as complete and accurate as possible.

Comb through your analytics to see how people are behaving. What pages are
they visiting and on which devices? Are some pages noticeably more popular
for a specific type of device (say, tablets versus desktop)? Does the number of
pages visited and time spent on the site vary dramatically based on the device
or location? All of these things are clues to how users are currently interacting
with your site.

Conduct interviews with users to determine what their goals are and how that
varies depending on the context in which they access your site. Just beware of in-
accuracies: when self-reporting, people tend to exaggerate in one way or another.

It’s worth observing behavior as well. This can range from giving a user a specific
task to achieve and then watching how he goes about accomplishing it to merely
going to the nearest store and watching how people interact with their devices.

capabilities
Different devices have different capabilities. Using progressive enhance-
ment, you can take advantage of advanced features to create a more powerful
user experience.

HTML5 input types
Perhaps the simplest optimization is to make use of HTML5 input types where
appropriate. Historically, options for input fields have been limited, with the
most common type of input field being plain text.

9 Adam Greenfield, Everyware: The Dawning Age of Ubiquitous Computing (New Riders, 2006)

implementing reSponSiVe deSign238

ptg8274462

Storing articles on a device
A great example of taking advantage of the capabilities of a device is the
Boston Globe responsive site. Understanding that their readers may want
to come back to an article to read later, they implemented a “My Saved”
feature. The “My Saved” does pretty much what it sounds like: it allows
you to save an article to read later by storing it in your saved items. Now,
regardless of device you have access to it.

They then took it one step further. Many devices are able to store content
locally, on the device itself. So, using this functionality for devices that
support it, they store these saved articles directly on the visitor’s device.
Once on the device, a visitor can later read that article regardless of
whether or not they have an active internet connection.

It’s an excellent way to capitalize on the unique functionality provided by
modern devices. Simply by applying some careful thought, the experience
for users can be dramatically enhanced.

Chapter 9 • responsive experienCes 239

ptg8274462

HTML5 came along and added a bunch of new options with additional mean-
ing. Four in particular are useful for mobile devices:

•	 email: for email addresses

•	 tel: for phone numbers

•	 number: for numeric input

•	 url: for urls

What’s so great about these input types is that they help the browser under-
stand what type of input the field is expecting and optimize the experience
accordingly. Using them is simple, and if a device doesn’t support them, it will
simply fall back to the plain old text input field.

For example, consider the following field in a form, used to collect an email
address:

<input type=”text” name=”email” id=”email” />

When you view that page on your mobile device, you’ll see the typical qwerty
layout. Now, switch the type to email.

<input type=”email” name=”email” id=”email” />

Figure 9.2 When
iOS sees the “email”
input type, it subtly
adjusts the layout of
the keyboard (right).

implementing reSponSiVe deSign240

ptg8274462Now if you view the form on an iOS device, you’ll see that the @ sign has been
moved to where the space bar was to make it easier to access (Figure 9.2). It’s a
small, but helpful, optimization.

While Android doesn’t do anything for email fields, both Android and iOS
optimize the keyboard layout for other field types. See Figure 9.3 for examples
of how the screen becomes more user-friendly depending on the input type.

APIs
Form input fields are just the beginning. One of the most exciting ways to
capitalize on the unique characteristics of devices is by making use of emerging
device APIs. Devices are being increasingly filled with different sensors that
can determine location, orientation, and a host of other conditions in which
the devices are being used.

This information provides an incredible opportunity to create a truly per-
sonalized and optimized experience for your users. Take advantage of it
whenever possible.

Figure 9.3 HTML5 input
types, such as “url” (left)
and “tel” (right) provide
additional information
to the device so that it
can optimize the key-
board for users.

Chapter 9 • responsive experienCes 241

ptg8274462

Luke Wroblewski
Beyond LAyout

Luke Wroblewski is a digital product leader who has designed or contrib-
uted to software used by more than 700 million people worldwide. Luke
is also the author of three popular Web design books (Mobile First, Web
Form Design, and Site-Seeing: A Visual Approach to Web Usability).

Login screens are broken. Almost 82 percent
of people have forgotten the password they
used on a website and password recovery
is the number one request to intranet help
desks.10 That adds up to a lot of lost business,
increased costs, and upset customers.

Yet when considering how an important
interaction like login will work across dif-
ferent devices, most teams focus on layout.
They make sure the login experience “looks
right” on small, medium, and large screen
devices (see image of Windows Live Sign in).
Though they may look great, these solutions
carry over all the existing problems of login
screens and leave a lot of opportunities to do
better lying on the table.

By stepping back and considering how the
unique capabilities of different devices could
allow people to log in to a website, we can
go well beyond adaptive layout solutions.
Consider the ability to send and receive text
messages on a mobile device.

10 Data Monday: Login & Passwords at
www.lukew.com/ff/entry.asp?1487

The Windows Live Sign in screen on a desktop and
mobile web browser.

A log in screen design that uses SMS messaging in the
background to authenticate users.

implementing reSponSiVe deSign242

www.lukew.com/ff/entry.asp?1487

ptg8274462

Instead of relying on people to type a
username/e-mail and password in a set of
form fields using a tiny keyboard, we can
simply have them press a button that sends
an SMS text message in the background to
verify their account and let them into the site
(image on facing page). No typing required!

Of course, SMS isn’t the only capability we
can turn to. A device that supports touch
could instead require a unique combina-
tion of gestures to log people in. Microsoft’s
Windows 8 system does just that: people can
either snap or find a picture of their liking,
then set up a “picture password” by making
a series of lines, circles, or taps on the image
(see image). To log in, they need only recre-
ate these gestures on the image.

At this point, we’re well past adaptive layout
solutions. In fact, Microsoft’s re-thinking
of login might even be (gasp) a much more
humane form of authentication. After all,
what feels more human: drawing some marks
on a picture of your family or entering a
required length of lowercase and uppercase
letters and numbers (but not symbols!) into
a small form field that only displays ••••••
in return?

Without thinking beyond layout and making
use of the new capabilities our devices
have, we might be stuck with •••••• for
a long time—which seems like a big missed
opportunity to do better for our customers
and for ourselves.

Microsoft’s Windows 8
uses personal pictures
and touch gestures for
login.

Chapter 9 • responsive experienCes 243

ptg8274462

geoloCation api

Consider a page that helps you locate a store. The most common implementa-
tion is to force you to drill down by location. You pick a state or a zip code and
the site returns the locations nearest to you. There’s a much better way.

The Geolocation API is one of the best supported device APIs around. Using it
allows you to create much better defaults for your site’s users.

To get familiar with the API, let’s whip together a quick demo that will tell you
how far away you are from historic Lambeau Field in Green Bay, Wisconsin.
The HTML structure is simple:
1.	 <html>

2.	 <head>

3.		 	 <title>Geolocation</title>

4.		 	 <meta name=”viewport” content=”width=device-width” />

5.	 </head>

6.	 <body>

7.		 	 <p>Testing the Geolocation API.</p>

8.		 	 <div id=”results”></div>

9.	 </body>

10.	 </html>

You’ll insert your JavaScript before the closing body tag.

The first thing to do is make sure the device supports the Geolocation API.
In a real-world example, you would want to provide a graceful fallback (such
as letting the user input a zip code). The proper fallback depends entirely on
the specific use case for your site. Since this is just a demo, let’s output some
generic text if the API is unsupported:
1.	 <script type=”text/javascript”>

2.	 var results = document.getElementById(‘results’);

3.	 //check for support

4.	 if (navigator.geolocation) {

5.	 	 // yay! we have geolocation support

6.	 } else {

7.	 	 results.innerHTML = ‘Bummer—looks like there is no geolocation

support. Good luck!’;

8.	 }

9.	 </script>

Line 1 grabs the element where you can insert the results of your geolocation tests.

implementing reSponSiVe deSign244

ptg8274462

On line 4, the script checks to see if the geolocation property exists. If it does,
the devices supports geolocation and you’re good to go. Otherwise, you can
display your unhelpful generic text.

If geolocation support is available, you can access the user’s current location
by using the getCurrentPosition method:
1.	 if (navigator.geolocation) {

2.	 	 navigator.geolocation.getCurrentPosition(function(pos) {

3.	 	 	 alert(pos.coords.latitude);

4.	 	 	 alert(pos.coords.longitude);

5.	 	 }, function(error) {

6.	 	 	 //ruh roh!

7.	 	 	 alert(‘Whoops! Error code: ‘ + error.code);

8.	 	 });

9.	 }

Lines 2–5 check the user’s current position and tell him his current latitude and
longitude coordinates (lines 3 and 4).

Lines 5–8 define a function to throw an error in case there’s a problem access-
ing the users current location for any reason.

If you open this page on a browser, you should be greeted with a prompt ask-
ing if you’re willing to share your location with this site (Figure 9.4). This is an
important step for security, and you don’t have to answer it every single time
the page loads.

Let’s make this a little more interesting. To determine how far away the user
is from Lambeau Field, we’ll need the location of the field. We’ll also need a
function to determine the distance between two pairs of latitude/longitude
coordinates.

You can store the coordinates for Lambeau Field in a variable:
var lambeau = {

 ‘lat’ : 44.5013805,

 ‘long’ : -88.062325

}

Figure 9.4 When
you try to access
the Geolocation API,
the visitor will see a
prompt asking them
for permission.

Chapter 9 • responsive experienCes 245

ptg8274462

The function for calculating distance is a little complicated and full of math.
The logic is available under a Creative Commons thanks to Movable Type
(www.movable-type.co.uk/scripts/latlong.html):
1.	 //creative commons distance function

2.	 function calculateDistance(lat1, lon1, lat2, lon2) {

3.	 	 var R = 3959; // miles

4.	 	 var dLat = (lat2 - lat1).toRad();

5.	 	 var dLon = (lon2 - lon1).toRad();

6.	 	 var a = Math.sin(dLat / 2) * Math.sin(dLat / 2) +

 Math.cos(lat1.toRad()) * Math.cos(lat2.toRad()) *

 Math.sin(dLon / 2) * Math.sin(dLon / 2);

7.	 	 var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));

8.	 	 var d = R * c;

9.	 	 return d;

10.	 }

11.	 Number.prototype.toRad = function() {

12.	 	 return this * Math.PI / 180;

13.	 }

The end result of the above function is the distance in miles between the two
locations passed to the function. I won’t get into the details about how it’s
calculated, because again, it’s kind of complicated. If you’re interested, it’s the

“haversine” formula and you can find a decent explanation on Wikipedia.

Armed with the location of Lambeau Field and the haversine formula, finding the
distance between the two points can be accomplished in just a few lines of code:
1.	 //check for support

2.	 if (navigator.geolocation) {

3.	 	 navigator.geolocation.getCurrentPosition(function(pos) {

4.	 	 	 results.innerHTML += “<p>Only “ + calculateDistance

 (pos.coords.latitude, pos.coords.longitude, lambeau.lat,

 lambeau.long) + “ miles from hallowed Lambeau Field.</p>”;

5.	 	 }, function(error) {

6.	 	 	 alert(‘Whoops! Error code: ‘ + error.code);

7.	 	 });

8.	 }

On line 3, the coordinates for the current position, as well as those for
Lambeau Field, are passed to the calculateDistance function. The resulting
mileage is then returned and added to the results element (Figure 9.5).

implementing reSponSiVe deSign246

www.movable-type.co.uk/scripts/latlong.html

ptg8274462

Figure 9.5 With the help of
the haversine formula, the
Geolocation API lets you
show how far the visitor is
from their destination.

This is a simple example, but now the user knows just how far he is from the
football field.

We can make this example a bit more powerful.

Particularly with a device being used on the go, it would be nice to see in what
general direction you need to go to get to your destination. With the latitude
and longitude coordinates, it’s possible to calculate a bearing. Using that bear-
ing, you can then rotate an arrow so that it points in the direction of the field.

↑

The calculateBearing function again comes from the Movable Type page
mentioned previously:
1.	 function calculateBearing(lat1, lon1, lat2, lon2) {

2.	 	 return Math.atan2(

3.	 	 	 Math.sin(lon2 - lon1) * Math.cos(lat2),

4.	 	 	 Math.cos(lat1) * Math.sin(lat2) -

5.	 	 	 Math.sin(lat1) * Math.cos(lat2) *

6.	 	 	 Math.cos(lon2 - lon1)

7.) * 180 / Math.PI;

8.	 }

Now, you can update the code to include the bearing check when the current
position is calculated:
1.	 if (navigator.geolocation) {

2.	 	 navigator.geolocation.getCurrentPosition(function(pos) {

3.	 	 	 results.innerHTML += “<p>Only “ + calculateDistance

 (pos.coords.latitude, pos.coords.longitude, lambeau.lat,

 lambeau.long) + “ miles from hallowed Lambeau Field.</p>”;

4.	 	 	 var	bearing	=	calculateBearing(pos.coords.latitude,		

	 	 pos.coords.longitude,	lambeau.lat,	lambeau.long);

5.	 	 	 var	arrow	=	document.getElementById(‘arrow’);

6.	 	 	 arrow.style.transform	=	‘rotateZ(‘	+	bearing	+	‘deg)’;

7.	 	 	 arrow.style.msTransform	=	‘rotateZ(‘	+	bearing	+	‘deg)’;

8.	 	 	 arrow.style.mozTransform	=	‘rotateZ(‘	+	bearing	+	‘deg)’;

9.	 	 	 arrow.style.webkitTransform	=	‘rotateZ(‘	+	bearing	+	‘deg)’;

Chapter 9 • responsive experienCes 247

ptg8274462

10.	 	 }, function(error) {

11.	 	 	 //ruh roh!

12.	 	 	 alert(‘Whoops! Error code: ‘ + error.code);

13	 	 });

14.	 }

Everything is the same as before, but with a few additions. Line 4 now calcu-
lates the bearing in degrees. Line 5 grabs the arrow and lines 6–10 rotate the
arrow using the CSS3 rotateZ transform. Now if you load the site on a browser
that supports geolocation, you’ll see the arrow pointing in the direction of
Lambeau Field (Figure 9.6).

On a desktop computer, you might question the value of having an arrow in
place, and that’s fair. It’s unlikely that anyone is going to be walking around
with a laptop trying to pinpoint a nearby location.

But on a device such as a smartphone or tablet, the arrow could be incredibly
useful. You could query the user’s location every few seconds and update the di-
rection the arrow points (as well as the distance), ultimately guiding the user right
to the destination. It’s a simple, but effective, enhancement of the user experience.

For fun, let’s look at some of the more cutting-edge uses of device APIs to get
a glimpse of their potential.

media Capture api

Another API, the Media Capture API, provides programmatic access to the
device’s camera and microphone through the getUserMedia method. This
is actually already supported by Opera Mobile as well as in special builds of
Chrome Canary. Mozilla also hopes to have the Media Capture API fully sup-
ported by Firefox 17. As with many of the device APIs, it’s amazing what you
can accomplish with a little code.

Figure 9.6 With a
little extra consid-
eration and effort,
the user sees an
arrow pointing in the
direction they need
to head.

implementing reSponSiVe deSign248

ptg8274462

Building a compass
Many web-enabled devices are now able to report their orientation
thanks to a built-in accelerometer. Many phones, for example, use this
information to rotate the display when the device is rotated. When the
device orientation changes, the deviceorientation event fires.

The latest builds of WebKit, implemented in iOS5, added two new,
experimental properties to the event: webkitCompassHeading and
webkitCompassAccuracy. webkitCompassHeading returns, in degrees, the direc-
tion relative to magnetic north. For example, true north is 0 degrees and
east is 90 degrees. webkitCompassAccuracy provides information about the
accuracy of the heading. If the value of webkitCompassAccuracy is 5, for
example, the heading could be off by plus or minus 5 degrees.

Using this API, James Pearce, Head of Mobile Developer Relations at
Facebook, built a compass entirely in HTML, CSS, and JavaScript. If you
have an iPhone, head over to http://jamesgpearce.github.com/compios5
and check out the demo. Move your phone around, and the compass
needle adjusts to point in the correct direction.

A fully functional compass built entirely with HTML, CSS and JavaScript.

Chapter 9 • responsive experienCes 249

http://jamesgpearce.github.com/compios5

ptg8274462

Again, for demonstration purposes, let’s keep the HTML simple.
1.	 <html>

2.	 <head>

3.	 	 <meta name=”viewport” content=”width=device-width” />

4.	 	 <style type=”text/css”>

5.	 	 	 #canvas{

6.	 	 	 	 background: #eee;

7.	 	 	 	 border: 1px solid #333;

8.	 	 	 }

9.	 	 </style>

10.	 </head>

11.	 <body>

12.	 	 <video id=”myVid” width=”300” height=”375” autoplay></video>

13.	 	 <input id=”camera” type=”button” disabled=”true”

 value=”Take Photo”></input>

14.	 	 <canvas id=”still” width=”300” height=”375”></canvas>

15.	 </body>

16.	 </html>

There’s not much going on here, but if you aren’t that familiar with HTML5 yet,
there might be a few foreign elements in use.

The <video> element lets you embed videos without the use of Flash. Typically,
there’s a source applied, but in the example above, you’ll be dynamically setting
it to use the camera so for now an empty element works fine.

The <canvas> element lets you draw graphics on it through the use of JavaScript.
You can render text, photos, animations, graphs—you name it. For this example,
the canvas will display a photo once it’s been taken.

Now you need only a few lines of JavaScript to make a camera. Add the follow-
ing to the page, just after the closing body tag:
1.	 <script>

2.	 	 navigator.getUserMedia({video: true}, function(stream) {

3.	 	 	 var video = document.getElementById(“video”);

4.	 	 	 var canvas = document.getElementById(“still”);

5.	 	 	 var button = document.getElementById(“camera”);

6.	 	 	 video.src = stream;

implementing reSponSiVe deSign250

ptg8274462

7.	 	 	 button.disabled = false;

8.	 	 	 button.onclick = function() {

9.	 	 	 	 canvas.getContext(“2d”).drawImage(video, 0, 0);

10.	 	 	 };

11.	 	 }, function(err) { alert(“there was an error “ + err)});

12.	 </script>

Line 2 calls the getUserMedia method. The method accepts three arguments.
The first argument tells the device what media you want access to. The argu-
ment must be passed as a JavaScript object. Here, we’re passing {video: true}
to tell the device we need access only to the video. If you wanted access to both
video and audio, you would pass {audio: true, video: true}.

When you try to access the camera, the user is prompted to allow or deny
access, similar to how they were prompted for the Geolocation API. The
second argument is the function to run if you’re granted access. If the success
callback is called, the stream is passed back for use. The third argument is the
function to run if you’re not granted access. This third argument is optional.

Lines 3–5 grab the video, the button we’ll use to take the photo, and the canvas
where the photo will be displayed.

Line 6 sets the src property of the video to equal the stream the device has
passed back to the code. Line 7 enables the button. You don’t have to have it
disabled by default, but it’s a good idea to do so. Given the security concerns a
user may have with granting a site camera access, keeping the button disabled
by default is a nice visual reassurance.

Finally, the function on lines 8–10 watch for the button to be clicked. When it
is, it draws the image on the canvas using the canvas drawImage method. The
first parameter (video in the example above) that is passed to the drawImage
method refers to the picture to draw on the canvas.

The next two parameters are the x, y coordinates of the position where the im-
age should be placed. In the example above, passing “0, 0” tells the browser to
display the image in the top left corner of the canvas.

Chapter 9 • responsive experienCes 251

ptg8274462When you load the page in Opera Mobile (which you should be able to install
on any Android device), you’ll be prompted to allow the site access to the cam-
era. If you accept, you’ll see the real-time video feed from your camera showing
up on the screen. When you click Take Picture, the photo appears as a still shot
on the canvas below the button (Figure 9.7).

In addition to the initial “wow” factor, this could be incredibly useful. Imagine
any site that has user profiles. You could let the user snap a photo using his
device and immediately set it as his avatar.

more apiS on the horizon

As more and more device APIs become available, developers will be able to cre-
ate websites and applications that rival the technology in today’s science fiction
stories—responsive technology that until now we’ve only dreamed of.

It’s my hope that using these APIs will become second nature, not an after-
thought. The ability to interact with a device on this level is something we’ve
never before had the ability to do. We can’t just stop at layout or else we sell the
potential of this unique medium short.

Figure 9.7 When
the page loads in
Opera Mobile, you’ll
see real-time video
from the camera of
your device (left).
When you click Take
Picture a still shot of
the video will appear
below the button
(right).

implementing reSponSiVe deSign252

ptg8274462

The Geolocation and Media Capture APIs are just the start. Here are a few
other APIs that are in development:

table 9.1 Device APIs

Api puRpose

Contacts API Lets you read, add, and edit contacts stored on the device

Messaging API Lets you send, receive, and manage SMS messages

Calendar API Lets you read, add, and edit the device calendar

Battery Status API Indicates the battery charge level and whether or not the
device is plugged in

Vibration API Controls device vibration for tactile feedback

Sensor API Lets you access sensors such as accelerometer, ambient light,
magnetic field, and proximity

HTML Media Capture Lets you interact with the device’s camera/microphone
through HTML forms

Web Intents Allows integration between web applications through client-
side service discovery

Wrapping it up
It’s difficult to transition to a new medium. We tend to stick with what is famil-
iar and comfortable, but over time we slowly shed the restraints of past medi-
ums and embrace the new one.

The Web is an interactive medium, not just a series of documents. We need to
move past our obsession with layout and start building responsive experiences.
Thinking of responsive design as a series of sensors can help to expand the way
we build for the Web.

Networks vary dramatically and can significantly alter the user experience.
A truly responsive experience takes this into consideration and adjusts the
experience accordingly. Our tools are limited at the moment, but the Network
Information API offers tremendous opportunity.

Chapter 9 • responsive experienCes 253

ptg8274462

The context of use also varies. We need to be careful not to use misleading ref-
erences such as “mobile.” Context is a complex thing made up of the user, the
task, the technology, and the environment. It’s far more complex than any one
word implies. Consider these different aspects when designing your sites.

Different devices have different capabilities. These can range from simple
things such as using different field types in forms, to more complex examples
involving device APIs. Some of these APIs, such as geolocation, can be used
today to make experiences more personalized. As more and more APIs are
implemented, we’ll be able to create the kind of responsive experiences we’ve
only dreamed of.

implementing reSponSiVe deSign254

ptg8274462

Afterword

Looking
forward

It’s clear that technology is not the limiting
factor, it’s just our desire to imagine a

different future. —Scott JenSon

ptg8274462

The challenge of working in a medium as dynamic as the Web is its incredible
diversity and its rapid evolution. That’s also the exciting part.

Responsive design is just a start. It’s a step toward fulfilling the Web’s potential,
but only a step. Thinking about the Web in terms of its present diversity will
help you prepare for the diversity to come.

In this book, we focused mainly on the desktop, mobile devices, and tablets.
There’s a flood coming soon, though. Smart TVs are on the horizon, bringing
with them a whole set of new concerns. Many of them share the same resolu-
tion as the monitors you use at work. Adjusting layout will not be enough to
cater to both the user who’s two feet away from his screen and the user sitting
on a couch 12 feet away.

Connected cars are also rapidly increasing in popularity. Mercedes-Benz, Ford,
and Audi are already pushing cars with Internet connections. You can question
the safety of having applications built into a car’s dashboard, but they’re on
their way regardless.

Cars and TVs are just the start. Connected devices such as vacuum cleaners,
windowpanes, and yes, refrigerators are all being worked on.

The 2013 Ford
Fusion features an
8-inch touch display
and the company’s
SYNC technology.

ImplementIng reSponSIve deSIgn256

ptg8274462

One Swedish TV
company lets you
sync your phone to
your browser, allow-
ing you to use it as
a remote control for
the video playing on
your desktop.

In the introduction, I mentioned Scott Jenson’s article about the upcoming
zombie apocalypse of devices.1 As technology becomes more affordable, the
number of web-enabled devices is rapidly increasing. The Web is not a plat-
form constrained by a single device.

People are already making rudimentary use of content shifting. Services like
Instapaper and Readability let you find something on your desktop, save it,
and then read it later on your phone or tablet.

In October 2011, the W3C announced it would be working on a specification
for discovering nearby devices.2 This opens the potential for content shifting to
be taken to an entirely different level. One use case could be to use a phone to
discover content and then control the playback of that content on a nearby TV.

1 “The Coming Zombie Apocalypse” at http://designmind.frogdesign.com/blog/the-coming-zombie-
apocalypse-small-cheap-devices-will-disrupt-our-old-school-ux-assumptions.htm

2 “Web applications: discovering and binding to services” at www.w3.org/QA/2011/10/web_applications_
discovering_a.html

Afterword  •  Looking forwArd 257

http://designmind.frogdesign.com/blog/the-coming-zombieapocalypse-small-cheap-devices-will-disrupt-our-old-school-ux-assumptions.htm
http://designmind.frogdesign.com/blog/the-coming-zombieapocalypse-small-cheap-devices-will-disrupt-our-old-school-ux-assumptions.htm
www.w3.org/QA/2011/10/web_applications_discovering_a.html
www.w3.org/QA/2011/10/web_applications_discovering_a.html

ptg8274462

The jsdo.it Controller
allows you to control
a spaceship in your
desktop browser
from your phone.

Technologies like WebSockets—which is already supported in Internet
Explorer 10, Chrome 17+, and Firefox 11+, and partially supported in
Safari, Opera, iOS, and Opera Mobile—allow you to open a session between
a browser and server for interacting between the two. This opens the door for
multi-user interaction, as well as multi-device interaction.

The space between devices is rapidly diminishing, and with it, so should our
singular focus on layout. As more devices become connected, the interactive
nature of the Web becomes much harder to ignore. We must start looking be-
yond the device in hand and instead consider the constellation of experiences.

The Web is an incredibly powerful medium, one that can respond to any num-
ber of sensors and go beyond the physical walls of a device. Let’s challenge
ourselves not to settle for merely responding to layout.

ImplementIng reSponSIve deSIgn258

ptg8274462

259

Photo Credits
ExamplE SitE
Photo by Jayel Aheram at www.flickr.com/photos/aheram/440478825
Photo by Jack Rydquist at www.flickr.com/photos/chaos123115/2994577362
Photo by Ed Yourdon at www.flickr.com/photos/yourdon/3890007962
Photo by Trevor Manternach at www.flickr.com/photos/trvr3307/2352092039

ChaptEr 1
Page 11: Photo by Chris Harrison, Carnegie Mellon University. Used by permission.
Page 16: Photo from Adaptive Web Design: Crafting Rich Experiences with Progressive Enhancement
by Aaron Gustafson (Easy Readers, 2011). Photo used by permission.

ChaptEr 4
Page 109: Photo by John Martinez Pavliga at www.flickr.com/photos/virtualsugar/2972610947
Page 117: Copyright The Royal Observatory, Greenwich

ChaptEr 5
Page 133: Photo by Luke Wroblewski at www.flickr.com/photos/lukew/7382743430/in/
set-72157630151452558. Used by permission.
Page 149: Photo by Jeremy Vandel at www.flickr.com/photos/jeremy_vandel/4279024627

ChaptEr 6
Page 167: Photo by Jeremy Keith at www.flickr.com/photos/adactio/2888167827
Page 172: Photo by David Fulmer at www.flickr.com/photos/daveynin/6027218091

ChaptEr 9
Page 235: Photo by Eelke Dekker at www.flickr.com/photos/eelkedekker/5339017351

www.flickr.com/photos/aheram/440478825
www.flickr.com/photos/chaos123115/2994577362
www.flickr.com/photos/yourdon/3890007962
www.flickr.com/photos/trvr3307/2352092039
www.flickr.com/photos/virtualsugar/2972610947
www.flickr.com/photos/lukew/7382743430/in/set-72157630151452558
www.flickr.com/photos/lukew/7382743430/in/set-72157630151452558
www.flickr.com/photos/jeremy_vandel/4279024627
www.flickr.com/photos/adactio/2888167827
www.flickr.com/photos/daveynin/6027218091
www.flickr.com/photos/eelkedekker/5339017351

ptg8274462

ImplementIng ResponsIve DesIgn260

index

A
accessibility issues, 141
Adaptation, CSS (Cascading Style Sheets)

CSS Device Adaptation specification, 63
CSS Grid Layout specification, 49
device pixels versus CSS pixels, 58–59
Flexbox specification, 49
frameworks, 20, 37
LESS preprocessors, 33
rendering engines, 59
SASS preprocessors, 33

Adaptive Images script, 107–108, 110
Adaptive Web Design: Crafting Rich Experiences with

Progressive Enhancement, 15–16
Adobe Shadow, 151
advertising and fixed assets, 122–125
Affero General Public License v3 (AGPL), 213
AGPL (Affero General Public License v3), 213
all media type, 66
Allsopp, John, 22
Amazon Kindle. See Kindle (Amazon)
analytics in planning, 133–134

audits
page-by-page, 140
page tables, 143–144
templates, 142

base market shares, 138–139
demographic surveys, 138
implications for design, 135
metrics of importance, 135, 138–139
mobile web metrics, 138
server-side code, 135
skewed results, JavaScript, 134–135

anchorInclude function, 187, 189–190
and media query keyword, 67
Android. See Google/Android/Chrome
appendAround script, 193
Apple. See also iOS and Safari

Internet-enabled TVs, 6, 256
MacBook Pro, high-resolution displays, 115
Macintoshes, display sizes, 6
mouse, introduction of, 7
touch-enabled screens, 223

aside element, 39
aspect-ratio media query feature, 68
Audi, Internet connections, 256

audits in planning
page-by-page, 140
page tables, 143–144
templates, 142

B
background images, 111–113
Barebones, 175–176
Barnes & Noble Nook, e-book domination, 6
Battery Status API, 253
BBC, iPlayer, 141
BBC News, 136–137
“Beyond Layout,” 242–243
BlackBerry

analytics
Google Analytics results, 134
skewed market share statistics, 139

default font sizes, 32
input methods, 149
media queries, 74–75
web fonts, 113

Bootstrap (Twitter) style guide, 174
Boston Globe’s “My Saved” feature, 239
Boulton, Mark

“A Responsive Experience,” 229
Designing Grid Systems video series, 36

Bowles, Cennydd, “What bugs me about
‘content-out’”, 181

box-sizing element, 42
braille media type, 66
breakpoints

converting from pixels to ems, 85–86
creating, 78–79
definition, 27
design approaches

enhancing for larger screens, 83–84
following content, 79–82

Bringhurst, Robert, The Elements of Typographic
Style, 26

Bringing Design to Software, 171
Brown, Dan, Communicating Design, 154
browsers

device variations, 6–8
mock-ups for design, 170–171
proliferation of, 3–6

ptg8274462

261InDex

C
Calendar API, 253
<canvas> element, HTML5, 250
CDNs (Content Delivery Networks), 110
Champeon, Steven, progressive enhancement

concept, 14
“Choosing a Target Device OS,” 75
Chrome. See Google/Android/Chrome
Clark, Josh, “Josh Clark debunks the 7 Myths of

Mobile Web Design,” 164
cloud service, WURFL (Wireless Universal

Resource FiLe), 213
CMSs (content management systems)

COPE (Create Once Publish Everywhere), 196
flaws, 17
maintaining/updating content, 194
WYSIWYG (What You See Is What You Get)

editors, flaws of, 17, 194–196
Colborne, Giles, Simple and Usable Web, Mobile, and

Interaction Design, 163, 236
collaboration in design workflow, 155–158
color-index media query feature, 68
color media query feature, 68
“The Coming Zombie Apocalypse,” 10, 257
comments, conditional, 47
Communicating Design, 154
“Comparing the June 15, 2012 and June 15, 2011

runs,” 20
Compass API for iPhone, 249
Complete.com website, 234
“A ‘Comprehensive’ Guide to Mobile Statistics,” 138
conditional comments, 47
Contacts API, 253
content

CDNs (Content Delivery Networks), 110
CMSs (content management systems), 17
content modeling, 183–184
content reference wireframes, 165
enhancing content

anchorInclude function, 187, 189–190
Reqwest module, 187
teaser paragraphs, 186, 190
through truncation, 190

hiding content
images, 100–101
View Desktop links, 184–186
View Full Site links, 184, 186

hierarchy of, 182
breakpoints following content, 79–82

order of, 191–192
Flexible Box Layout Module (Flexbox), 192
Grid Layouts, 37–38, 192–193

planning
accessibility issues, 141
audits, 140–144
“Content First” concept, 180–181
content simultaneously, 180–181
reordering, 130
structure and hierarchy, 139–140

removing content
images, 100–101
View Desktop links, 184–186
View Full Site links, 184, 186

truncating content, 190
types of, 181–182
WYSIWYG (What You See Is What You Get)

editors
flaws of, 17
text display issues, 192
updating content, 194–196

Content Delivery Networks (CDNs), 110
content management systems. See CMSs
Content Strategy for the Web, 144
“Contextual Web,” 237
cookies, reading and writing, 218–220
COPE (Create Once Publish Everywhere), 196
“Creating Intrinsic Ratios for Video,” 119
CSS (Cascading Style Sheets)

capabilities, 17

D
“A Dao of Web Design,” 22
“Data Monday: Login & Passwords,” 242
DDR (device detection repositories)

definition, 203
DeviceAnywhere, 152
DeviceAtlas device database, 203
WURFL, 213–226

demographic surveys, 138
descendant selectors, 31
Designing Grid Systems video series, 36
desktop down design. See also mobile first design

mobile queries, 74–76
problems, 131

Detector library, 207
device-agnostic Web design, 13
DeviceAnywhere, 152
device-aspect-ratio media query feature, 68
DeviceAtlas, 215

DDR (device detection repositories), 203
versus WURFL, 215

device detection, 203
DDR (device detection repositories), 203
DeviceAtlas, 215
WURFL, 216–218

ptg8274462

ImplementIng ResponsIve DesIgn262

device detection repositories. See DDRs
“Device Experiences & Responsive Design,” 230
device-height media query feature, 68
device-none style rule, 103
device-width media query feature, 68
display property, 46–49
display sizes

advertising, 122–125
high-resolution displays, 115–116

SVG (Scalable Vector Graphics), 115–116
variations of, 6
video, embedding, 118–122

“Doing a Content Inventory (Or, A Mind-Numbingly
Detailed Odyssey Through Your Web Site)”, 142

E
e-book readers, built-in web browsers, 6
ECMAscript, 69
eCSSential, 73
elastic layouts, 26
The Elements of Content Strategy, 144
The Elements of Typographic Style, 26
email input type, 240
embossed media type, 66
ems

media queries, 29–31
queries based on, 85–86

sizing fonts
converting breakpoints from pixels to ems,

34–36, 85–86
elastic layouts, 26

Enros, Madhava, 145
Everyware: The Dawning Age of Ubiquitous

Computing, 238
example articles

“Beyond Layout,” 242–243
“Performance Implications of Responsive

Design,” 102–103
“Responsive Design and Accessibility,” 141
“RESS in the Wild,” 210–211
“Selling Responsive Design,” 159
“Small Phone, Big Expectations,” 136–137
“Vertical Media Queries,” 70–71

F
feature detection, 218–220. See also device

detection; user agent detection
basics, 204
combining with user agent detection, 207–208

Detector, 207
Modernizr, 204–206
modernizr-server library, 205–206
pros and cons, 206

Filament Group
appendAround script, 193
iOS-Orientationchange-Fix, 61

Finck, Nick
“Contextual Web,” 237
progressive enhancement concept, 14

Firefox (Mozilla)
download increase with lower page load time, 98
Enros’ constellation of devices concept, 145
matchMedia method, 104
multi-column layouts, 83
pixel- versus em-based media queries, 85
prefixed syntax, 42
rem units, 33
testing websites, 150
Web Sockets, 258

“Firefox & Page Load Speed–Part II,” 98
Firtman, Maximiliano, “Mobile Emulators &

Simulators: The Ultimate Guide,” 150
FitVids plug-in, 119
fixed-width layouts

basics, 23–25
mixing with fluid, 44–50

Flaherty, Rob, “Responsive Ad Demos,” 123
Flash (Adobe), Google Analytics, 135
Flexible Box Layout Module (Flexbox), 192
Flexible Web Design, 23
fluid layouts

basics, 25
em measurements, 26
mixing with fixed-width, 44–50

@font-face declaration, 113–114
font sizing

default font sizes, 32
ems, 29–31

elastic layouts, 26
percentages, 31

fluid layouts, 25
pixels, 28–29

16px default, 32
converting to ems, 34–36, 85–86
device versus CSS, 58–59
fixed-width layouts, 23–25
and zooming, 28–29

rems (root ems), 32–33
responsive design, best method, 33

Ford Motor Company, Internet connections, 256
form factors, 2

ptg8274462

263InDex

Foursquare, 130
frameworks

cautions in using, 20
12-column grids, 37

Frost, Brad
responsive navigation approaches, list of, 88
“Selling Responsive Design,” 159
“Support vs. Optimization,” 145

Future Friendly manifesto, 14

G
gaming devices, built-in web browsers, 6
Geolocation API, 244–248
Gibson, Alex, Tap.js plug-in, 225
Gillenwater, Zoe Mickley, 25

Flexible Web Design, 23
GitHub

appendAround script, 193
Barebones, 175
FitVids, 119
grid template repository, 40
matchMedia polyfill, 104
modernizr-server library, 205–206
orientation change fix, 61
Reqwest module, 187
responsive image methods, 110
Tap.js plug-in, 225

“Global mobile statistics 2012: all quality mobile
marketing research, mobile Web stats,
subscribers, ad, revenue, usage, trends…”, 161

Google Analytics, 134–135
Google/Android/Chrome

browsing on mobile phones, 234
demand driving diversity and cost, 10
Google Analytics, 134–135
Internet-enabled TVs, 6
matchMedia method, 104
media queries, 75

background images, 112
Network Information API, 232–233
prefixed syntax, 42
rem units, 33
RESS (Responsive Design and Server-Side), 209
Scalable Vector Graphics (SVG), 115
testing websites, 150

Adobe Shadow, 151
design, 169
performance, 102–103

web fonts, 113–114
Web Sockets, 258
WURFL or JavaScript, 218

graceful degradation versus progressive
enhancement, 14, 16

Greenfield, Adam, Everyware: The Dawning Age of
Ubiquitous Computing, 238

“Grey Box Methodology,” 167
Grid Layouts, 37–38, 192–193
grid layouts

benefits of, 36–37
content-out, content defining grids, 37–38
setting grids, 38–44

grid media query feature, 68
Grigsby, Jason

“A ‘Comprehensive’ Guide to Mobile Statistics,”
138

image downloading time, 110
“segmentation is part of advertising,” 110

“GSMA Announces That the Proliferation of
Connected Devices Will Create a US$1.2
Trillion Revenue Opportunity for Mobile
Operators by 2020,” 161

Gustafson, Aaron, Adaptive Web Design: Crafting
Rich Experiences with Progressive Enhancement,
15–16

H
Halvorson, Kristina, Content Strategy for the Web, 144
handheld media type, 66
Hay, Stephen, “content reference wireframes,” 165
Headscape.co.uk, 70
height media query feature, 68, 71
height viewport meta tag property, 61
hover media query feature, 69
HTML5 for Web Designers, 39
HTML Media Capture API, 253
hybrid layouts, 26–27

I
IAB (Interactive Advertising Bureau’s) standard ad

sizes, 23, 38
iFrame, 118–119
images and responsive design

Adaptive Images script, 107–108, 110
background images, 111–113
hiding from mobile devices, 102–103
high-resolution displays, 115–116

SVG (Scalable Vector Graphics), 115–116
Mobitest measurement tool, 103
network element, 231–232
progressive enhancement, 14, 16
responsive image method polyfill, 110

ptg8274462

ImplementIng ResponsIve DesIgn264

images and responsive design (continued)
selectively serving images 99–105
sizing with CSS, 43
strategies, 105–106

Adaptive Images, 107–108, 110
Sencha.io Src, 106–107

variations of display sizes, 6
weight of, 97–99

img element, src attribute ???, 135
implementingresponsivedesign.com website, 19
“Inclusive Web Design for the Future,” 15
initial-scale viewport meta tag property, 62
Instapaper service, 257
Interactive Advertising Bureau’s (IAB) standard ad

sizes, 23, 38
Internet-enabled TVs, 6, 256
Internet Explorer (Microsoft)

conditional comments, 47, 50
CSS Device Adaptation specification, 63
measurements

em units, 31
rem units, 33

media queries, 92–93
multi-column layouts, 83
navigation items, 91
prefixed syntax, 42
Scalable Vector Graphics (SVG), 115
standards, support of, 7
testing websites, 150, 169
user agent detection, 201
Web Sockets, 258

“Inventing on Principle,” 172
iOS. See also Apple

email input type, 240–241
iPad

high-resolution displays, 115
leading tablets, 5

iPhone
browsing on mobile phones, 234
default font sizes, 32
device versus CSS pixels, 58
display sizes, 6
emergence of smartphones, 5
high-resolution displays, 115
web fonts, 113

Network Information API, 233
orientation bug fix, 61
rem units, 33
RESS (Responsive Design and Server-Side), 209
testing with Adobe Shadow, 151
webkitCompassAccuracy and webkitCompassHeading

properties, 249
Web Sockets, 258

iPad (Apple)
high-resolution displays, 115
leading tablets, 5

iPhone (Apple)
browsing on mobile phones, 234
default font sizes, 32
device versus CSS pixels, 58
display sizes, 6
emergence of smartphones, 5
high-resolution displays, 115
web fonts, 113

Irish, Paul, 104

J
JavaScript, 36–39, 100–101

cautions in using, 20
skewed analytics results, 134–135

JavaScript Object Notation (JSON), 204
Jehl, Scott

anchor-include jQuery pattern, 187
appendAround script, 193
eCSSential, 73
iOS-Orientationchange-Fix, 61

Jenson, Scott, “The Coming Zombie Apocalypse,”
10, 257

“Josh Clark debunks the 7 Myths of Mobile Web
Design,” 164

jQuery
anchorInclude function, 187, 189–190
anchor-include pattern, 187
FitVids plug-in, 119

jsdo.it Controller, 258
JSON (JavaScript Object Notation), 204

K
Kapor, Mitchell, 171
Keith, Jeremy

HTML5 for Web Designers, 39
“Windows mobile media queries,” 49

keyboards, input methods, 7
keywords, media queries

and, 67
not, 67
only, 72
or, 72

Kindle (Amazon)
cross-device usage, 145–146
data-only cellular connections, 222
default font sizes, 32
e-book domination, 6

ptg8274462

265InDex

media queries, 74
ems versus pixels, 85

support of standards, 7
Kirby, Mark, “The Mobile context,” 236
Kissane, Erin, The Elements of Content Strategy, 144
Koblentz, Thierry, “intrinsic rations,” 119
Koch, Peter-Paul, functions to read and write

cookies, 218

L
layout types, 27

elastic, 26
fixed-width, 23–25

mixing with fluid, 44–50
fluid, 25–26
hybrid, 26–27
responsive design, best method, 27

A List Apart, 22
Lloyd, Paul Robert, Barebones, 175
Lovinger, Rachel, “Nimble Report,” 195

M
MacBook Pro, high-resolution displays, 115
Macintoshes, display sizes, 6
Managing Enterprise Content: A Unified Content

Strategy, 184
Manson, Robbie, 40
Marcotte, Ethan, 17

“responsive architecture,” 228–229
Responsive Web Design, 156, 228
“Responsive Web Design,” 11–13

market shares, analytics, 138–139
Maslen, Tom, “Small Phone, Big Expectations,”

136–137
matchMedia() method, 104–105
maximum-scale viewport meta tag property, 61
max-width declaration, 44
McLuhan, Marshall, rear-view mirror theory,

171–172
mdot sites, 103
Media Capture API, 248, 250–252
media queries

based on ems, 85–86
breakpoints

converting from pixels to ems, 85–86
design, enhancing for larger screens, 83–84
design, following content, 79–82

CSS rules, 72
definition, 27
embedded versus external, 73–74

ems
converting breakpoints from pixels to ems,

85–86
queries based on, 85–86

features to test against, 67–69
logical keywords

and, 67
not, 67
only, 72
or, 72

matchMedia() method, 104–105
media expressions, 67
mediaQuery bookmarklet, 79
media types, 65–66
navigation

options, 88
toggling menus, 88–91, 104–105

order implementation, desktop down, 74–76,
131

structure, 65
vertical media queries project, 70–71

mediaQuery bookmarklet, 79
mental models, 3
Mercedes-Benz, Internet connections, 256
Merritt, Ed, “Vertical Media Queries,” 70–71
Messaging API, 253
Microsoft. See also Internet Explorer

OmniTouch, 11
Windows 8 logins, 243
Windows Live Sign in, 242
Windows Phone 7

condidtinal comments, 49
media queries, 74

Xbox 360, built-in browser, 6
minimum-scale viewport meta tag property, 63
min-resolution media query, 115–116
“The Mobile context,” 236
mobile devices

device-agnostic Web design, 13
early models, difficulties of, 4–5
increase of traffic, 5
proliferation of, 4, 161–162

increased by affordability, 10
increased by designs, 11

smartphones, 161–162
affordability, 10–11
emergence of, led by iPhone, 5

tablets
emergence of, led by iPad, 5
projected sales by 2015, 5

web metrics, 138
WML (Wireless Markup Language), 4

ptg8274462

ImplementIng ResponsIve DesIgn266

“Mobile Devices Drive More Than Half of Traffic to
Twitter and Pandora,” 5

“Mobile Emulators & Simulators: The Ultimate
Guide,” 150

“Mobile First,” 160, 242
mobile first design. See also desktop down design

basics, 160–164
media queries, order implementation, 75–76,

103, 132
selectively serving images 99–105

“The Mobile Movement,” 235
“Mobile Shopping Framework: The role of mobile

devices in the shopping process,” 145
“Mobile Sites vs. Full Site,” 136
Mobile Web Best Practices, 159
Mobitest measurement tool, 103
mock-ups

basics, 168–169
designing in browsers, 170–171
static, 169–170, 173
tools, 172–173

Modernizr
downloading, 204
pros and cons, 206
using, 204–206

modernizr-server library, 205–206
Moll, Cameron, “Optimal width for 1024px

resolution?”, 23
monochrome media query feature, 68
mouse, input methods, 7
mouse, introduction of, 7
Mozilla Firefox

download increase with lower page load time, 98
Enros’ constellation of devices concept, 145
matchMedia method, 104
multi-column layouts, 83
pixel- versus em-based media queries, 85
prefixed syntax, 42
rem units, 33
testing websites, 150
Web Sockets, 258

multi-column layouts, 83–84
“My Saved” feature, Boston Globe, 239

N
National Public Radio (NPR), COPE (Create Once

Publish Everywhere), 196
NetFront browser

media queries, 74
standards support, 7

Netscape, agent detection, 201

Network Information API, 232–233
Nielsen, Jakob, “Mobile Sites vs. Full Site,” 136
“Nimble Report,” 195
Nintendo Wii, built-in browser, 6
Nook (Barnes & Noble), e-book domination, 6
not media query keyword, 67
NPR (National Public Radio), COPE (Create Once

Publish Everywhere), 196
number input type, 240

O
Olsen, Dave, Detector library, 207
OmniTouch (Microsoft), 11
“On a small screen, user experience is everything,” 145
only media query keyword, 72
Opera/Opera Mobile/Opera Mini

device versus CSS pixels, 58
multi-column layouts, 83
pixel- versus em-based media queries, 85
rem units, 33
RESS (Responsive Design and Server-Side),

209, 212
testing websites, 150
video and Take Picture feature, 252
Web Sockets, 258
WURFL, 217

“Optimal width for 1024px resolution?”, 23
Ordering Disorder: Grid Principles for Web Design,

36–37
orientation media query feature, 68
or media query keyword, 72

P
page-by-page audits, 140
page tables in audits, 143–144
Pearce, James

Compass API for iPhone, 249
modernizr-server library, 205–206
Sencha.io Src service, 106

percentages, sizing fonts, 25, 31
PerfectoMobile, 152
“Performance Implications of Responsive Design,”

102–103
phone calls from websites, 221–223
<picture> and @srcset conflict, 110
pixels

density of, 115–116
sizing fonts, 28–29

16px default, 32
converting to ems, 34–36, 85–86

ptg8274462

267InDex

device versus CSS, 58–59
fixed-width layouts, 23–25
and zooming, 28–29

planning responsive design
advertising considerations, 132
analytics, 133–134

implications for design, 135
metrics of importance, 135, 138–139
server-side code, 135
skewed results, JavaScript, 134–135

conscious choice, 128
content, 140–144

reordering, 130
structure and hierarchy, 139–140

context considerations, 130, 136–137
devices and platforms, 144–145

browser support, 131–132
cross-device usage, 145–147
performance, 129, 136–137
testing, 147
testing, on actual devices, 148–150
testing, on emulators, 150
testing, with third-part services, 152

time requirement, 130–131
platforms, proliferation of, 3–6
“Platform Versions,” 75
plug-ins, cautions in using, 20
Podjarny, Guy, “Performance Implications of

Responsive Design,” 102–103
pointer media query feature, 69
polyfills

definition, 104
matchMedia, 104
responsive image methods, 110

print media type, 66
Professional JavaScript for Web Developers, 91
progressive enhancement versus graceful

degradation, 15–16
projection media type, 66

R
Readability service, 257
rear-view mirror theory, 171–172
rems (root ems), 32–33
rendering engines, 59
Reqwest module, 187–189
resolution media query feature, 68
responsible design workflow

collaborative/hybrid approach, 155–158
communication with clients, 157–159, 181
cross-device consistency, 160

desktop down design
mobile queries, 74–76
problems, 131

interactive medium emphasis, 155
iterations, 157
mobile first design

basics, 160–164
media queries, order implementation,

75–76, 103, 132
selectively serving images 99–105

tools
mock-ups, 168–173
style guides, 173–177
wireframes, 165–168

“Responsive Ad Demos,” 123
“responsive architecture” concept, 228–229
“A Responsive Experience,” 229
responsive content. See also content

CDNs (Content Delivery Networks), 110
CMSs (content management systems), 17
content modeling, 183–184
content reference wireframes, 165
enhancing content

anchorInclude function, 187, 189–190
Reqwest module, 187
teaser paragraphs, 186, 190
through truncation, 190

hiding content
images, 100–101
View Desktop links, 184–186
View Full Site links, 184, 186

hierarchy of, 182
breakpoints following content, 79–82

order of, 191–192
Flexible Box Layout Module (Flexbox), 192
Grid Layouts, 37–38, 192–193

removing content
images, 100–101
View Desktop links, 184–186
View Full Site links, 184, 186

truncating content, 190
types of, 181–182

responsive design
actuators, 229
complexity of, 16–17
desktop down design, 74–76
example of, 11–13
future friendly concept, 14
future of, 256–258
goals, 16–17
sensors, 229
systems, 229

ptg8274462

ImplementIng ResponsIve DesIgn268

“Responsive Design and Accessibility,” 141
Responsive Design and Server-Side (RESS)

components
combining responsive design and server side

detection, 208
limitations, 209, 212
need for RESS, 200

responsive design planning
advertising considerations, 132
analytics, 133–134

implications for design, 135
metrics of importance, 135, 138–139
server-side code, 135
skewed results, JavaScript, 134–135

conscious choice, 128
content

accessibility issues, 141
audits, 140–144
reordering, 130
structure and hierarchy, 139–140

context considerations, 130, 136–137
devices and platforms, 144–145

browser support, 131–132
cross-device usage, 145–147
performance, 129, 136–137
testing, 147
testing, on actual devices, 148–150
testing, on emulators, 150
testing, with third-part services, 152

time requirement, 130–131
responsive experiences

APIs, 241, 253
Compass, 249
Geolocation, 244–248
Media Capture, 248, 250–252
Network Information, 232–233

capabilities, HTML5 input types, 238, 240–241
context element, 234–236

clarification, 236–237
observation and research, 237–238

network element, 230–231
Network Information API, 232–233
test loading images, 231–232

“responsive architecture” concept, 228–229
“Responsive Nav-Patterns,” 88
Responsive Web Design, 156
“Responsive Web Design,” 11–13
RESS (Responsive Design and Server-Side)

components
combining responsive design and server side

detection, 208
limitations, 209, 212
need for RESS, 200

“RESS in the Wild,” 210–211
R/GA, 145
Rieger, Stephanie, “Strategies for choosing testing

devices,” 148–149
Rockley, Ann, Managing Enterprise Content:

A Unified Content Strategy, 184
Royal Observatory of Greenwich, 116
Runyon, Erik, “RESS in the Wild,” 210–211

S
Safari (Apple)

matchMedia method, 104
rem units, 33
testing websites, 150
Web Sockets, 258

Samsung Acclaim
feature agent detection, 207–208
user agent detection, 202–203

Santa Maria, Jason, “Grey Box Methodology,” 167
Scalable Vector Graphics (SVG), 115–116
scan media query feature, 68
screen media type, 66
script media query feature, 69
“Selling Responsive Design,” 159
Sencha.io Src service, 106–107
Sensor API, 253
“Shopzilla Site Redesign–We get what we measure,” 97
“The Significance of Mobile Web in Africa and its

Future,” 161
Simple and Usable Web, Mobile, and Interaction

Design, 163, 236
Site-Seeing: A Visual Approach to Web Usability, 242
sizing fonts. See font sizing
“Small Phone, Big Expectations,” 136–137
“Smartphone market drives 600% growth in mobile

web usage,” 5
“Smartphone Owners: A Ready and Willing

Audience,” 234
“Smartphone sales pass PC sales for the first time in

history!”, 4
SMS messaging, 242–243
Sony Ericsson LiveView, 10
SourceForge website, 213
speech media type, 66
Starbucks style guide, 174
“Strategies for choosing testing devices,” 148
style guides, 173–177
“Support vs. Optimization,” 145
SVG (Scalable Vector Graphics), 115–116
Swan, Henny, “Responsive Design and Accessibility,”

141

ptg8274462

269InDex

T
table-related values, HTML versus CSS, 46–48
“Tablet Market May Surge to $49 Billion,” 5
Tap.js plug-in, 225
teaser paragraphs, 186, 190
tel input type, 240–241
templates, audits, 142
TenByTwenty.com, 70
testing on devices and platforms, 147

on actual devices, 148–150
on emulators, 150
with third-part services, 152

“Toffee-Nosed,” 13
tty media type, 66
tv media type, 66
Twitter Bootstrap style guide, 174

U
ua-parser.php script, 207
Ubuntu, 218
url input type, 240–241
user agent detection. See also device detection;

feature detection
basics, 201–202
combining with feature detection, 207–208
Detector, 207
pros and cons, 203
user agent strings, 202–203
using, 203

user agent (UA) strings, 17
user-scalable viewport meta tag property, 61–62

V
Veen, Jeffrey, “Doing a Content Inventory (Or, A

Mind-Numbingly Detailed Odyssey Through
Your Web Site)”, 142

“Vertical Media Queries,” 70–71
Vibration API, 253
Victor, Bret, “Inventing on Principle,” 172
video

Designing Grid Systems series, 36
embedding, 118–122
Take Picture feature, 252

View Desktop links, 184–186
View Full Site links, 184, 186
viewports

CSS Device Adaptation specification, 63
definition, 27
pixels, device versus CSS, 58–59

rendering engines, 59
viewport meta tag properties

height, 61
initial-scale, 62
maximum-scale, 61
minimum-scale, 63
user-scalable, 61–62
width, 60

Vimeo videos, 118, 121
Vinh, Khoi, Ordering Disorder: Grid Principles for

Web Design, 36

W
W3C, “Web applications: discovering and binding to

services,” 257
WAI-ARIA (Web Accessibility Initiative-Accessible

Rich Internet Applications), 141
Web

flexibility and unpredictability, 22
future friendly, 14
unstable environment, 2

“Web applications: discovering and binding to
services,” 257

web fonts, 113–114
Web Form Design, 242
Web Intents API, 253
WebKit-based browsers

device versus CSS pixels, 58
high-resolution displays, 115
multi-column layouts, 83
Network Information API, 232
rendering engines, 59
web fonts, 113–114
web queries, 131

webkitCompassAccuracy property, 249
webkitCompassHeading property, 249
WebPageTest measurement tool, 102–103
Web Sockets, 258
WeedGarden.net blog, 210
“What bugs me about ‘content-out’”, 181
“What Users Want from Mobile,” 98
What You See Is What You Get (WYSIWYG) editors

flaws of, 17, 194–196
maintaining/updating content, 194–196
text display issues, 192

width media query feature, 68, 71
width viewport meta tag property, 60
Wii (Nintendo), built-in browser, 6
Wilcox, Matt, Adaptive Images script, 107
Windows 8 (Microsoft) logins, 243
Windows Live Sign in (Microsoft), 242

ptg8274462

ImplementIng ResponsIve DesIgn270

“Windows mobile media queries,” 49
Windows Phone 7 (Microsoft)

conditional comments, 49
media queries, 74

Winograd, Terry, Bringing Design to Software, 171
wireframes, 165–168
Wireless Markup Language (WML), 4
Wireless Telephony Applications Interface (WTAI),

221
Wireless Universal Resource FiLe. See WURFL
WML (Wireless Markup Language), 4
workflow of responsible design

collaborative/hybrid approach, 155–158
communication with clients, 157–159, 181
cross-device consistency, 160
desktop down design

mobile queries, 74–76
problems, 131

interactive medium emphasis, 155
iterations, 157
mobile first design

basics, 160–164
media queries, order implementation,

75–76, 103, 132
selectively serving images 99–105

tools
mock-ups, 168–173
style guides, 173–177
wireframes, 165–168

“The World in 2011: ICT Facts and Figures,” 4
Wroblewski, Luke

“Beyond Layout,” 242–243
“Data Monday: Login & Passwords,” 242
“Device Experiences & Responsive Design,” 230
“Mobile First,” 160, 242
RESS (Responsive Design and Server-Side)

components, 200
Site-Seeing: A Visual Approach to Web Usability, 242
Web Form Design, 242

WTAI (Wireless Telephony Applications Interface),
221

WTF Mobile Web, 159
WURFL (Wireless Universal Resource FiLe)

configuring, 214–216
DDR (device detection repositories), 203
versus DeviceAtlas, 215
device detection, 216–218

phone calls, 221–223
touch-enabled screens, 223–226

feature detection, 218–220
installing, 213
licensing, 213

WYSIWYG (What You See Is What You Get)
editors

flaws of, 17, 194–196
maintaining/updating content, 194–196
text display issues, 192

X
Xbox 360 (Microsoft), built-in browser, 6
XML

rendering engines, 59
SVG (Scalable Vector Graphics), 115–116

XSLT, rendering engines, 59

Y
Yiibu, 116
YouTube videos, 118, 121

Z
Zakas, Nicholas, Professional JavaScript for Web

Developers, 91

ptg8274462

About the Author
Tim Kadlec is a web developer working in northern
Wisconsin. His diverse background working with small
companies, large publishers, and industrial corporations
has allowed him to see how the careful application of web
technologies can impact businesses of all sizes.

Tim is the co-founder of Breaking Development, one of the
first conferences dedicated to web design and development

for mobile devices. He is very passionate about the Web and can frequently be
found speaking about what he’s learned at a variety of web conferences.

He was a contributing author to Web Performance Daybook Volume 2 and blogs
at http://timkadlec.com. He can also be found sharing his thoughts in a briefer
format on Twitter at @tkadlec.

Tim lives in the small town of Three Lakes, Wisconsin, with his wife and their
three daughters.

About the Technical Editor
In 2000, Jason Grigsby got his first mobile phone. He be-
came obsessed with how the world could be a better place
if everyone had access to the world’s information in their
pockets. Those mobile dreams hit the hard wall of reality—
WAP was crap. So Jason went to work on the Web until
2007, when the iPhone made it clear the time was right. He

joined forces with the three smartest people he knew and started Cloud Four.

Since cofounding Cloud Four, he has had the good fortune to work on many
fantastic projects, including the Obama ’08 iPhone app. He is founder and pres-
ident of Mobile Portland, a local nonprofit dedicated to promoting the mobile
community in Portland, Oregon.

Jason is co-author of Head First Mobile Web and is a sought‐after speaker and
consultant on mobile. If anything, he is more mobile obsessed now than he was
in 2000. You can find him blogging at http://cloudfour.com; on his personal
site, http://userfirstweb.com; and on Twitter as @grigs.

271

http://timkadlec.com
http://cloudfour.com
http://userfirstweb.com

	Contents
	CHAPTER 1: THE ANYWHERE, EVERYWHERE WEB
	Where we went wrong
	The devices are coming, the devices are coming
	Display size
	Network speeds
	Standards support
	Input method
	Context

	Separate sites
	Divergence

	Becoming responsive
	Progressive enhancement

	Why another book on responsive design?
	What’s covered?
	Who is this book for?
	Code examples
	The companion site

	CHAPTER 2: FLUID LAYOUTS
	Layout options
	Fixed-width
	Fluid layouts
	Elastic layouts
	Hybrid layouts
	Which approach is the most responsive?

	Sizing fonts
	Pixels
	Ems
	Percentages
	Bonus round: rems
	Which approach is the most responsive?
	Converting from pixels

	Grid layouts
	Content-out
	Setting the grid

	Mixing fixed and fluid widths
	Table layouts—the right way

	Wrapping it up

	CHAPTER 3: MEDIA QUERIES
	Viewports
	A pixel is a pixel, unless it isn’t
	Viewport tag and properties

	Media query structure
	Media types
	Media expressions
	Logical keywords
	Rules

	Embedded versus external
	Media query order
	Desktop down
	Mobile up

	Create your core experience
	Determining breakpoints
	Follow the content
	Enhancing for larger screens
	Using ems for more flexible media queries

	Navigation
	Toggling

	Supporting Internet Explorer
	Wrapping it up

	CHAPTER 4: RESPONSIVE MEDIA
	What’s the problem?
	Performance

	Selectively serving images to mobile
	JavaScript
	Introducing matchMedia

	Responsive image strategies
	Fighting the browser
	Resignation
	Going to the server

	Responsive image options
	Sencha.io Src
	Adaptive Images
	Wait, what’s the answer here?

	Background images
	While we’re at it

	High-resolution displays
	SVG

	Other fixed-width assets
	Video
	Advertising

	Wrapping it up

	CHAPTER 5: PLANNING
	Choosing to be responsive
	Considerations
	Performance
	Context
	Content negotiation
	Time investment
	Support
	Advertising
	Conclusion

	Consider your analytics
	Skewed site analytics
	Which stats matter
	Skewed market share statistics

	Consider your content
	Content audit
	Page tables

	Consider where you’re going
	Optimized for some, accessible to many

	Consider the cross-device experience
	Prepare your test bed
	Actual devices
	Emulators
	Third-party services

	Wrapping it up

	CHAPTER 6: DESIGN WORKFLOW
	Your mileage may vary
	An interactive medium
	Collaboration
	Thinking in systems

	Thinking mobile first
	Mobile is exploding
	Mobile forces you to focus
	Mobile extends your capabilities

	The tools
	Wireframes
	Mock-ups
	Style guides

	Wrapping it up

	CHAPTER 7: RESPONSIVE CONTENT
	Starting with the content
	Content types
	Purpose
	Creation
	Structure

	What content to display, and when
	Removing content
	Enhancing content

	When should content order change?
	Structure, again

	Where we need to go
	Code soup
	Baby steps
	Building an API

	Wrapping it up

	CHAPTER 8: RESS
	User agent detection
	Anatomy of a user agent string
	What can you do with user agent detection?

	Feature detection
	Modernizr
	Going to the server

	Combining user agent detection and feature detection
	RESS: The best of both worlds
	Troubled waters
	Installing WURFL
	Configuration

	Detecting capabilities
	Making calls
	Optimizing for touch

	Wrapping it up

	CHAPTER 9: RESPONSIVE EXPERIENCES
	A system of sensors
	Network
	What can we do?

	Context
	Classifying context
	Observe and research

	Capabilities
	HTML5 input types
	APIs

	Wrapping it up

	CHAPTER 10: LOOKING FORWARD
	Photo Credits
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	About the Technical Editor
	About the Author

