Ruby on Rails and XML

Generate a Rails stub to manipulate an XML document

Skill Level: Intermediate

Daniel Wintschel (daniel@humandoing.net)
Software developer
Helium Syndicate

17 Apr 2007

You've very likely heard of Ruby on Rails. Maybe you've actually used it; perhaps it is
your new programming mistress. Whatever the case, it looks like Rails is here to
stay, and to everyone's benefit. Ruby plays very nicely with XML -- read further for
the details.

Section 1. Before you start

This tutorial is for a general programming crowd interested in learning the basics of
setting up a skeleton Rails application and using Ruby and Rails to process XML.
Beginner and intermediate programmers or people who have a little bit of exposure
to Rails will likely benefit the most. It will spend a brief amount of time discussing
Rails in general, and Ruby syntax as necessary, but these topics are covered in
much better detail elsewhere. Please see Resources for additional information.

What is this tutorial about?

Today you will build a Rails application, discuss some basics about the way that
Rails works, how it's structured and how to use it, and then you'll move on to working
with XML. There are a number of ways to both generate and parse XML in Ruby,
and you'll look at a few of them, including REXML (Ruby Electric XML), Builder and
Hpricot (Technically Hpricot is an HTML parser -- but it's fast, and works on XML,
too).

Prerequisites

Ruby on Rails and XML
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 1 of 25

mailto:daniel@humandoing.net
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

The following tools are needed to follow along with this tutorial:

* Ruby -- If you run Windows, your best bet is to download the One-Click
Ruby Installer. If you use some variation of Linux or Mac OS X, you might
already have Ruby installed. If not, you can download it from
http://www.ruby-lang.org. The installation instructions are straightforward.
Version 1.8.4 or 1.8.5 is recommended.

* RubyGems -- Get the gems you need, and install Rails, Builder and
Hpricot if you haven't already.

* Rails -- You can install Rails through RubyGems. While not really part of
this discussion, you figure all that out at http://www.rubyonrails.com/down.
You'll use version 1.2.2 for this tutorial.

» Builder -- Install through RubyGems.
» Hpricot -- Install through RubyGems.

One of the beautiful things about Rails is how easy it is to perform object persistence
and relational mapping. Since you'll only deal with XML in this tutorial, you won't
actually use a database for anything.

To actually run the demo application, it's worth noting that the only thing you should
have to do is to start the application. You can see how to do that in Start up the
server.

Also, you'll be provided with a list of all of the files that have been explicitly created
or modified aside from those that will be generated by Rails. These include:

» app/controllers/main_controller.rb

« views/layouts/main.rhtmi

* views/main/index.rhtml

* public/stylesheets/reset-fonts-grids.css

* public/stylesheets/style.css

Section 2. Introduction

Over the past five to seven years, XML has become the de-facto standard (or at
least one of the de-facto standards) for inter-application communication. Whether it's
an application running on the same machine, or some Web service out in the ether,
a payment gateway, a shipping gateway or another random data source, XML is
something that you've likely come to know, like it or not. With that said, it seems a
little ironic to write a tutorial that deals with XML processing on a framework that

Ruby on Rails and XML
Page 2 of 25 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://rubyforge.org/projects/rubyinstaller/
http://rubyforge.org/projects/rubyinstaller/
http://www.ruby-lang.org
http://www.rubygems.org
http://www.rubyonrails.com
http://www.rubyonrails.com/down
http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

became famous with words like: "Learn how to use the open-source Web framework
Rails to create real-world applications with joy and less code than most frameworks
spend doing XML sit-ups.” (Cited from Loud Thinking). It's worth noting that none of
the actual XML processing done in this tutorial is dependent on Rails. All of the XML
APIs you'll use are straight up Ruby and can be used in any Ruby application. You
will do it in a Rails context for the sake of providing a way to upload files to process,
and an easy way to interact with the code that you write.

Ruby

Ruby, if you didn't already know, is a dynamically typed scripting language that was
created by Yukihiro "Matz" Matsumoto. He began developing the language in 1993,
and it was released to the public in 1995. With all sorts of great features like
closures, callbacks and duck typing, it allows for some amazingly flexible
frameworks to be built on top of it, which leads to Rails.

Rails

Rails is a framework built by David Heinemeier Hansson and released to the public
in 2004. Rails is a framework for building Web applications using the model, view,
controller (MVC) architecture and emphasizes programming by convention over
configuration. It has all sorts of amazingly wonderful features like fully automated
object-relational mapping and persistence. In this tutorial, you demonstrate XML
parsing with some of the basic features of Rails, namely simple controller and view
features.

Ruby and XML

Ruby has many APIs for parsing and generating XML. REXML is the standard API
that ships as part of the Ruby core, whereas frameworks like Builder and Hpricot are
available as gems. Gems are essentially third-party APIs or libraries that conform to
a specific format. They are easily downloadable and installable (conceptually similar
to a third-party Java API available in a JAR file).

REXML

REXML is the standard Ruby library for parsing and creating XML. It is bundled as
part of the Ruby Core language distribution, so you know it will always be available.
Builder

Builder is a third-party gem that is becoming more and more popular for the purpose

of generating XML content. The syntax is very clean, easy to use and read, utilizing
Ruby's method_missing callback for generating XML.

Ruby on Rails and XML
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 3 of 25

http://www.loudthinking.com/arc/000416.html
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

Hpricot

Hpricot is a fast HTML parser (but you can parse XML with it, too!) written by "why
the lucky stiff" that is gaining in popularity as well.

#{random_xml_ util}

Ruby has several other APIs for parsing XML, but | will not cover them in this
tutorial. If you want to know more, go to RubyForge and search around.

Section 3. Building the skeletal Ruby on Rails app (in
preparation for XML processing)

Now, you'll move on to the good stuff. In this section, you'll take advantage of a
bunch of the bundled scripts that generate all sorts of Rails goodness for you. | will
discuss some Rails basics in this section before | get to the meat of XML processing.

Generate the Rails application stub

| did all of the work in this tutorial in Mac OS X from the terminal, so if you use
Windows, feel free to follow along using the command line. All of the commands
should work exactly the same.

The first thing you do is create the Rails application by executing the command in
Listing 1.

Listing 1. Command to generate a Rails application stub

rails xm _tutorial -f

This runs the Rails script and tells it that you want to create a new Rails application
called xml_tutorial. It also used the - f flag, which freezes the Rails version to the
current version that you have installed. This will copy the current version of the Rails
framework into the vendor/plugins directory, and will hopefully help you have less
trouble when you try to run the application, in the event that you have a different
version of Rails installed.

The script runs and generates the application structure for you. See the partial
output in Listing 2.

Listing 2. Partial output from Rails application creation script

Ruby on Rails and XML
Page 4 of 25 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

nmonkey: ~/ Work/ Rai |l s_XM__Tutorial daniel$ rails xm _tutorial -f
create
create app/controllers
create app/ hel pers
create app/ nodels
create app/views/layouts

rm-rf vendor/rails

nkdir -p vendor/rails

cd vendor/rails

m/ activesupport-1.4.1 activesupport

mv activerecord-1.15.2 activerecord

mv actionpack-1.13.2 acti onpack

mv actionmailer-1.3.2 actionmailer

ng acti onwebservice-1.2.2 acti onwebservice
C -

froze

nonkey: ~/ Work/ Rail s_XM__Tutori al daniel$

Now you can start to see the beginnings of Rails ‘convention over configuration' by
seeing the default application structure created for you. Within a Rails application,
you place files in certain locations depending on what they are. Controllers, helpers,
models, views, -- all of these go within their respective directories, and thus Rails
knows what they are, and what to do with them. As mentioned previously, the Rails
directory layout will not be covered in depth, but you can find lots of good information
in Resources.

Create the controller

As you might expect, Rails comes with a script to generate stubs for certain types of
objects. Some of the object stubs that Rails can generate for you include controllers,
models, mailers, Web services, and so on. You just want to create a controller, so
let's do that now. First you need to change into the Rails application directory. (see
Listing 3).

Listing 3. Creating a Rails controller

nonkey: ~/ Wrk/ Rai | s_XM__Tutori al daniel$ cd xm _tutorial/
nonkey: ~/ Work/ Rai | s_XM._Tutorial/xm _tutorial daniel$ ruby script/generate controller main
exi sts app/controllers/
exi sts app/ hel pers/
create app/views/ main
exists test/functional/
create app/controllers/min_controller.rb
create test/functional/main_controller_test.rb
create app/ hel pers/ main_hel per.rb
nonkey: ~/ Work/ Rai | s_XM__Tutori al /xm _tutorial daniel$

Listing 3 calls the Ruby interpreter, asks it to run a file called generate from the script
directory, and passes the arguments contr ol | er mmai n to it. Rails generated a
controller for you called 'main’ that you can now use for your actions. As per the
‘convention over configuration' mantra, each public method defined within a
controller is referred to as an action and usually has an associated view. These are
all accessed based on a URI convention.

Ruby on Rails and XML
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 5 of 25

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

For example, now you have a controller called 'main’. If you define a public method
within the controller called 'index’, you can now access that controller and action
respectively at http://localhost:3000/main/index.

Rails has all sorts of nifty ways you can extend this routing, but suffice it to say that
this is all you will look at in this tutorial. There are more interesting things to discuss
-- like XML.

Create the layout and view

You don't need any fancy views here, so let's whip up something to get this running
as quickly as possible. Check out the code download for some sample files.

The difference between layouts and views is that a layout is an overall page layout.
It's reused over and over for the common elements of your application (for example:
navigation, headers, footers, and so on). Views are designed to be used within the
layouts.

Create a file called main.rhtml within your layouts directory, again following
convention. You name it with the same name as your controller, so Rails
automatically knows that this is the layout you want to use with this controller. Then
you'll create an index view that has a basic form upload field so you can upload and
parse an XML document. (To save some time, copy index.rhtml from the code
download.)

One last look

Take one last look at the layout of the important directories and files that you have
here in Figure 1.

Figure 1. Important files and partial directory structure

¥ | xml_tutorial
Y app
¥ | controllers
= application.rb
| main_controller.rb

b [helpers
| " models
Yi D views
v |7 layouts
@) main.rhtmil
Yi " main

@ index.rhtml
You have your xml_tutorial directory, which is the root directory of your Rails
application. Then you have the main_controller.rb which was generated using Rails

Ruby on Rails and XML
Page 6 of 25 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

built-in generate script. You created a layout called main.rhtml and a view called
index.rhtml. Notice that the view is in a directory called main. This tells Rails that all
views in this directory belong to the controller called main. It's all that convention
over configuration stuff again. And it's pretty great. Now, when you browse to
http://localhost:3000/main/index, Rails knows that you want the following:

e Go to main_controller.rb
» Execute the index method
* Use the layouts/main.rhtml layout in the resulting display to the user

* Include the content of main/index.rhtml in the layout that you return to the
user

Start up the server

Once you've created your views, you can start up the server (depending on what
software you have installed, this might start WEBrick, Lighttpd or Mongrel, none of
which are discussed here). To start up the server, return to the command line (see
Listing 4).

Listing 4. Starting the Rails application

nonkey: ~/ Work/ Rai | s_XM__Tutorial/xm _tutorial daniel$ ruby script/server
=> Booting lighttpd (use 'script/server webrick' to force WEBrick)

=> Rails application started on http://0.0.0.0: 3000

=> Call with -d to detach

=> Crl-C to shutdown server (see config/lighttpd.conf for options)

As you can see, you ran the command ruby script/server and your server is now
running. Take a peek at what you get in Figure 2.

Figure 2. Your user interface

Ruby on Rails and XML
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 7 of 25

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

B8O Rulbvy on Rails amd XML Tutorial —
v (o (A% + @ ntp-/localhost: 3000 /main/ index v i G- o,

APF| Decumentaicn T JIRA Coogle Apps

iz} Disable =~ 5, Cookies = [] C55 = = Forms = |8 images = {{§ Information - Miscellaneows * " Outline = ; Resine

Ruby on Rails and XML Tutorial

Funy can 00 AML Situps, T00.

Generate and Download Sample XML Document

Clicking on ane of these links will generate the sample XML file we're going 1o B¢ wsing for this tutorial. One Enk will
penerate the XML wsing REXML, and the ather link wusing Bullder. Il leave it as an exercise for the reader 1o figure our
which link does what.

Genergie Lisng REXML Genergte |

Upload the Samle XML Document, Parse and Manipulate

This fonm bets you upload the Sample XML document that we genarated above and parse its content with both REXML and
Hpricot,

File: | Browse...
Parse with REXML | Parss with Hpricot| Parse with REXML recursively |

Daone v
How was that for some foreshadowing for the rest of the tutorial? Let's carry on!

Section 4. Creating a new XML document

You can create XML documents in several ways, anywhere from using APIs to
writing it by hand. This section demonstrates how to use both REXML and Builder to
generate XML documents. You'll use both APIs to generate the same document,
which will give you a feel for how the syntax differs between the two APIs.

Your sample XML document

You will use a sample document that lists food for your generating and parsing
examples. Listing 5 shows the basic structure of the XML document that you'll create
and use.

Listing 5. Sample XML to be used throughout the tutorial

<Food>
<Di sh rating="2" category="si ngaporean">
<Di shNane>Fi sh Head Curry</ D shNane>
<Wher eToBuy>Littl e |ndi a</ Wher eToBuy>
</ Di sh>

Ruby on Rails and XML
Page 8 of 25 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

<Di sh rating="8" category="nexi can">
<Di shNanme>Por k Enchi | ada</ Di shNanme>
<Wher eToBuy>l guana Caf e</ Wher eToBuy>
</ Di sh>
</ Food>

The actual XML document that you generate will have about a dozen Di sh
elements, from some of my favorite places in Singapore. This list includes a couple
dishes that sound terrible just so | could give a low rating to a few dishes.

You'll generate this document based on hard-coded data that you'll just store in the
controller. The data will be stored as an Ar r ay of Hash in the controller

(mai n_control |l er. rb) sothatit's easy to access while you generate the XML
using REXML and Builder. Just for your piece of mind, Listing 6 contains a small
chunk of how the hard-coded data in the controller has been stored.

Listing 6. Ruby data structures (Array and Hash) used to generate the sample
XML

class MainControl |l er < ApplicationController

DI SHES = [
{ :rating =>2, :category => "singaporean",
:di sh_nane => "Fish Head Curry", :where_to_buy => "Little India" },

{ :rating =>8, :category => "western", :dish_nane => "Cowboy Burger",
:where_to_buy => "Brewerkz" },
... O her hashes here...

]

Next, look at how you can use REXML to turn this data into XML.

REXML

REXML, as | already mentioned, is the standard XML API that is bundled with the
core Ruby distribution. So you can count on it being present. It's pretty straight
forward to work with, although for large pieces of XML creation programmatically, a
lot of people prefer Builder, which you'll get to shortly. You can find all the sample
code from the listings in this section in main_controller.rb. Let's see how to go about
creating a new XML document using REXML in Listing 7.

Listing 7. Creating a new XML document using REXML

. { :rating =>8, :category => "nmexican", :dish_nanme => "Pork Enchilada",
:where_to_buy => "lguana Cafe" }
]

private
def generate_rexni

doc = REXM.:: Document . new
end

Ruby on Rails and XML
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 9 of 25

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

That's not really very hard, is it? How about adding a root element? Listing 8 shows
how.

Listing 8. Creating the root node in a REXML document

def generate_rexni
doc = REXM.:: Document. new
root = doc. add_el enent (" Food")
end
end

Now that you have the basic structure of your sample XML document, let's iterate
over your hard-coded data structure to generate the rest of the elements.

Listing 9. Using REXML to generate the sample XML content

root = doc. add_el emrent (" Food")
Dl SHES. each{ | el enent _dat a|

di sh_el enent = root.add_el enent ("Di sh")

di sh_el enent. add_attribute("rating", elenent_data[:rating])
di sh_el enent. add_attribute("category", el enent data[:category])

di sh_nanme_el ement = di sh_el ement. add_el erent (" Di shName")
di sh_name_el enent . add_t ext (el ement _dat a[: di sh_nane])

where_to_buy_el ement = dish_el enent. add_el enent (" Wer eToBuy")
where to_buy el ement . add_t ext (el ement_dat a[: where_to_buy])

Hopefully you're familiar with this Ruby syntax of iterating over an Arr ay. As you
can see in Listing 9, your code goes through each Hash within the Ar r ay, and
creates an XML Di sh element for each Hash. You give the Di sh element two
attributes ("rating” and "category") and two child elements ("DishName" and
"WhereToBuy"). To make things clean and easy to read, you're a little verbose with
your variable names and syntax. Now that you've successfully generated an XML
document, you need to write it to an object so you can send it back to the client. One
of the nice things about the REXM_: : Docunent class is that the wr i t e method will
write its contents to any object that responds to << st ri ng. Your luck continues
then, because Ruby's St ri ng class responds to << st ri ng; you just write the
XML document to a St ri ng then (see Listing 10).

Listing 10. Writing the contents of a REXML document to a String

where_to_buy_el ement. add_t ext (el ement _dat a[: where_t o_buy])

}

doc.wite(out_string ="", 2)
return out_string

end
end

Ruby on Rails and XML
Page 10 of 25 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

Note that in Ruby, you can declare variables on the fly, which is what you've done in
Listing 10. You've declared the variable out _st ri ng and assigned it an initial value
as part of the parameters you send to doc. wri t e. (The second parameter
represents the indentation.) Many other languages, like Java for instance, would
require this to be done in two steps, which would look something like Listing 11.

Listing 11. Alternative method for writing the contents of a REXML document
to a String

out_string = ""
doc.wite(out_string, 2)

You can do it this way in Ruby as well, but it's nice to get rid of the extra line of code.
In a moment, to actually see the document, you'll look at the code that hijacks the
Rails response, and writes the XML document that you generated back to the client's
browser as a file download. But first, see how to generate the same XML document
using Builder instead of REXML.

Builder

Builder makes it unbelievably easy to write beautiful code that generates XML
markup. So much so, that after you read the rest of this section, you might even
want to take the rest of the week off and ponder how wonderful Builder is.

In Listing 12, look at how you create a document.

Listing 12. Creating a new XML document with Builder

def generate_buil der
doc = Builder::Xm Markup. new(:target => out_string = ""
:indent => 2)
end

Notice here that Builder takes a target as one of the constructor parameters. With
REXML, you chose a target output object after you had used the API to generate
some XML. Builder just asks for the object you want to write your generated XML to
up front. Notice you do the same little inline variable declaration here that you did
with the REXML example.

Now is where you start to see the real power of Ruby's net hod_m ssi ng callback,
and how APIs can take advantage of it. Witness how to create the Food element in
Listing 13.

Listing 13. Creating the root element of your sample XML document with
Builder

def generate_buil der
doc = Buil der:: Xm Mar kup. new(:target => out_string = "", :indent => 2)
doc. Food

Ruby on Rails and XML
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 11 of 25

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

end

At this point, you might say something like - -"Wait a minute, there isn't a Food
method in an XML API -- that's silly!" - and you'd be correct. What happens here is
Ruby says "Whoa? | don't know about a Food method in this object, | will dispatch
this call to method_missing, and let the API handle it if it wants too, if not, I'll raise an
exception." So in essence, what your XML document now contains is shown in
Listing 14.

Listing 14. XML result based on previous method call on Builder document

<Food/ >

Now, see how you create nested elements, and attributes and text nodes in Listing
15.

Listing 15. Generating your sample XML document using Builder

def generate_buil der
doc = Buil der:: Xm Mar kup. new(:target => out_string = "", :indent => 2)
doc. Food {
Dl SHES. each{ | el enent _data
doc. Dish("rating" => elenent_data[:rating],
"category" => el ement _data|:category]){
doc. Di shNanme(el ement _dat a[: di sh_nanme])
?oc.V%ereToBuy(el enent _dat a[: where_t o_buy])

}

return out_string
end

That's it. This nice little chunk of code is all it takes to generate your sample XML
document with Builder.

You can see that as you nest code blocks, you create nested XML elements. If you
want to assign an attribute to an XML element, you can pass a Hash as a
parameter, and the attributes are created. For example, in the above code, the call
in Listing 16 will result in an XML element like Listing 17.

Listing 16. How to create an XML element with attributes using Builder

doc. Dish("rating" => elenent_data[:rating],
"category" => el enent_data[:category])

Listing 17 shows the resulting XML element.

Listing 17. XML result based on previously listed method call

<Di sh rating="8" category="western">

Ruby on Rails and XML
Page 12 of 25 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

One scenario that your sample code doesn't cover is the case where you might want

to create an element that has textual data and attributes. Imagine you wanted to
create an XML element something like Listing 18.

Listing 18. A sample XML element with both attributes and text

<Di sh rating="8" category="western">Cowboy Burger</D sh>

You can do this in Builder by passing a St r i ng argument, followed by a Hash
argument, like this in Listing 19.

Listing 19. How to create an XML element with attributes and text using
Builder

doc. Di sh(" Cowboy Burger",
"rating" => 8, "category" => "western")

As you can see, the syntax for Builder is incredibly easy to use, and amazingly

intuitive. In addition to | mentioned earlier, Table 1 cites a few special methods that

are a part of Builder's docunent object.

Table 1. Special methods from Builder's document object

Method name Action

cdat a! Inserts a CDATA section into the
XML markup

coment ! Inserts an XML comment into the
markup

decl ar e! Inserts an XML declaration into
the markup

i nstruct! Inserts a processing instruction
into the markup

target! Returns the documents target
object (the object that the XML is
written to)

For more information on Builder, check out the RDoc at RubyForge. Now let's take a

look at how to get this generated XML back to a browser.

Section 5. Downloading the XML document

Generally speaking, the purpose of an action method within a Rails controller is to

render a view back to the requesting client. The view is usually something like an

RHTML or RJS file. But what if you want to grab the response directly, and send

Ruby on Rails and XML
© Copyright IBM Corporation 1994, 2008. All rights reserved.

Page 13 of 25

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

something else entirely. That's what you'll do here.

Hijacking the Rails response

Sometimes you want to render your own content back to a client, like in the case of
a generated file (in this example XML). Sometimes it might be a PDF document,
comma delimited values, or some other format entirely. Rails allows you to this in
just a tiny fraction of code. Look at the method in main_controller.rb that's
responsible for sending your generated XML file back to the client's browser as a
downloaded file called sample.xml (see Listing 20).

Listing 20. Hijacking the Rails response to send custom data to the client

def hijack_response(out_data)

send_data(out_data, :type => "text/xm",
:filenane => "sanple.xm")
end

It really is that easy. In this case, out _dat a is the string instance that contains your
generated XML, "text/xml" is the mime type to be set in the response, and
"sample.xml" is the filename that will be presented to the client as the name of the
file it attempts to download. It's worth noting that send_dat a is a protected instance
method of the module Acti onControl | er:: Stream ng, which is included as a
mixin by Act i onCont r ol | er: : Base, which you in turn inherit from as part of the
class hierarchy (see Listing 21).

Listing 21. Rails controller class hierarchy

ActionControl |l er::Base (Part of the Rails franmework)
- ApplicationController (application.rb - generated for you)

- MainController (main_controller.rb - your controller)

Modules and mixins are beyond the scope of this tutorial, but check Resources for
more information about these. Now that you have some XML, let's do something
with it.

Section 6. Uploading a file in Rails (in this case, XML)

Imagine that you're pretty excited about this XML tutorial. Maybe you followed along,
and you generated the sample XML document by clicking on some of the links.
You're so excited that you show your boss the XML that was generated. But the
reaction from your boss is one of disappointment. He's extremely perturbed at the
very poor food ratings given to the Fish Head Curry and the Pig Organ Soup. Your

Ruby on Rails and XML
Page 14 of 25 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

boss demands that you immediately build him a Web application whereby he can
upload the XML document and assign more favorable ratings to his favorite food
dishes. You're in luck, because that's exactly what the rest of this tutorial is about!
Let's see how you can use Rails to upload a file for processing.

View code

For the sake of being complete, let's take a quick look at the snippet of code from
the view that handles the file upload form (see Listing 22).

Listing 22. RHTML form used for uploading an XML document

<% formtag({:action => "upload'}, {:multipart
=>true}) do -%
<p>
<l abel for="file">File:</l|abel ><%
file_field_ tag "xm _file" %

<% submt_tag "Parse with REXM." %
<% submit_tag "Parse with Hpricot" %
</ p>
<% end -%

You use the standard f or m t ag and the hel per method that is part of the Rails
framework, along withthe fi |l e_fi el d_t ag, which generates an HTML file input
tag, and subm t _t ag, which generates an HTML submit button. You'll use the
values of the submi t _t ag calls to determine which handler in the controller will
parse the uploaded XML document. Not very elegant, but it serves the purpose in
this example. Note that you don't use the helper tags that support backing by a
model, as the tutorial has no models.

Controller code

To get the contents of an uploaded file in a Rails controller is a single line of code
(see Listing 23).

Listing 23. Retrieving an uploaded file from the params object in your Rails
controller

def upl oad
upl oaded_file = parans[:xm _file]
end

That's it. If the user uploaded a file in that file box, the resulting variable will be either
an instance of St ri ngl Oor Fi | e. If the user didn't specify a file, then the result of
the upload will be an empty St ri ng. You don't need to care about what the class of
the upl oaded _fi | e object is, just whether or not it responds to the read method.
You can conditionally declare and assign the contents of the file to a variable, if the
upl oaded_f i | e instance responds to the r ead method (see Listing 24).

Listing 24. Reading the contents of an uploaded file into a String variable

Ruby on Rails and XML
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 15 of 25

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

def upl oad

upl oaded_file = parans[:xm _file]

data = upl oaded_file.read if upl oaded_file.respond_to? :read
end

After you have that, you can just delegate to whomever you want to parse the
uploaded data. In this case, you either pass it off to REXML or Hpricot, depending
on what button the user clicked in the browser (see Listing 25).

Listing 25. Delegation to appropriate parse method depending on user input

def upl oad
upl oaded_file = parans[:xm _file]
data = upl oaded_file.read if upl oaded file.respond_to? :read

i f request.post? and data
case parans[:conmmit]
when "Parse with REXM." : parse with_rexm (data)
when "Parse with Hpricot" : parse_w th_hpricot(data)
el se parse_recursive(data)
end
el se
redirect_to :action =>"index'
end

end

The only piece of code worth mentioning from Listing 25 is the first line of new code.
The first if statement just checks to make sure that the request is a POST (as
opposed to a GET) and that you actually have some data that was uploaded (make
sure that the user actually selected a file to upload). That's about it! Now let's see

what sort of code you need to write to actually parse and manipulate this uploaded
XML!

Section 7. Parsing and manipulating XML

Now that your boss is upset about the low-scoring Fish Head Curry, you're anxious
to get on with the ability to parse and manipulate XML. But you also know from
previous experience that these XML APIs seem to be user-friendly. So you're ready
to jump in and get some higher ratings for those dishes, to make your boss happy.

The goal here is to parse the uploaded XML document, search and iterate as
needed to find the Fish Head Curry and Pig Organ Soup dishes, and upgrade their
ratings to a 6. You hope that will improve the humor of your boss, and with any luck,
he'll start to notice the great code, instead of the low-scoring food dishes.

Parse with REXML

Ruby on Rails and XML
Page 16 of 25 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

In this section you parse to your sample document with REXML and update the
relevant elements appropriately. With REXML it is extremely easy to navigate
through an XML document as all the elements and attributes are accessible to you
array-style, or through XPath queries, or by simple iteration. | list some other great
REXML articles in the Resources. But for now, let's get to work. First you'll use an
XPath query to search for all of the Di shNanme elements in the document (see
Listing 26).

Listing 26. Using REXML's XPath class to search for DishName elements

def parse_with_rexm (xm _data)
doc = REXM.:: Docunent.new(xm _data)

REXML_: : XPat h. each(doc, "//Di shName"){
| di sh_nane_el ement |
#... your code here ...
#... do work with elements ...

}

doc.wite(out_string ="", 2)
hi j ack_response(out_string)
end

That simple bit of code will find all Di shNane elements in the document and iterate
over them, allowing you to put whatever custom code you want into the block, to do
whatever work you need to do with the elements. The text / / Di shNane is an XPath
guery that basically means "get me all DishName elements in this document.”

In this particular case, you want to check the text value of the element to see if it is
equal to "Fish Head Curry" or "Pig Organ Soup" (see Listing 27).

Listing 27. Retrieving the text value of a given XML element

if dish_name_el ement.text == "Fish Head Curry" or
di sh_nanme_el enent.text == "Pig O gan Soup"
#... your code here ...
#... do work with elenments ...
end

Calling the t ext method on a REXM. element will return the String value of the first
child text element (if one exists) or nil otherwise.

Once you have the correct Di shName element, you want to get the parent.
Remember your document structure (see Listing 28).

Listing 28. Partial snippet from sample XML

<Food>

<Di sh rating="2" category="si ngaporean">
<Di shNane>Fi sh Head Curry</ D shNane>
<Wher eToBuy>Littl e |ndi a</ Wher eToBuy>
</ Di sh>

</ Food>

Ruby on Rails and XML
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 17 of 25

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

The parent element is the Di sh element, and to access it, simply call the par ent
method (see Listing 29).

Listing 29. Retrieving an XML element's parent element using REXML

parent = dish_nane_el ement . par ent

Once you have the parent element, you can access the r at i ng attribute, and
assign it the new value (see Listing 30).

Listing 30. Assigning a new value to an attribute in an XML element using
REXML

parent.attributes["rating"] = 6

And voila! You just made your boss happier! Take a quick look at the entire block of
code in Listing 31.

Listing 31. Code block to navigate, parse and modify XML elements using
REXML

XPat h. each(doc, "//DishNane"){ |dish_nane_el ement |
if dish_nane_elenment.text == "Fish Head Curry" or
di sh_name_el enent.text == "Pig O gan Soup"
parent = dish_nane_el ement . par ent
parent.attributes["rating"] = 6
end

}

Now, because you feel really cool, and want to impress your boss after that rating
fiasco, you decide to try to write this rate-changing XML manipulating snippet again,
in a single line of code. By now you feel like a Ruby hero, so it's a shap (separated
onto multiple lines for readability). See Listing 32.

Listing 32. An alternative approach to parse and manipulate the sample XML in
a single line of code

doc.root.each_el enent("//Di shNane"){ |e|
e.parent.attributes["rating"] = 6
unl ess ["Fish Head Curry"”, "Pig Organ Soup"].index(e.text).nil? }

This method doesn't use an XPath explicitly; rather it uses the each_el enent
method, which is part of REXML's El enent class. If you wanted to read this code
as an English sentence, left to right, it would read something like this (important
words bolded):

"Find each DishName element, and assign the parent element's rating attribute a
value of six, unless the text of the DishName element is not 'Pig Organ Soup' or
'Fish Head Curry™.

Ruby on Rails and XML
Page 18 of 25 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

Now let's have some fun with Hpricot!

Parse with Hpricot

Hpricot is technically an HTML parser, not an XML parser, but because HTML and
XML use essentially the same syntax, Hpricot happily parses any XML document
you send to it. Many people choose Hpricot over REXML for its speed (the scanner
is written in C) and syntactical sugar as many Rubyists like to say.

A caveat to working with Hpricot on the XML front is that if you have case-sensitive
data, you might have some issues. Version 0.5 (the latest) even when parsing a
document as XML explicitly, converts all element names to lowercase. A ticket in the
Hpricot Trac (#53) asks to address this, but it hasn't happened yet. You want to be
aware of this if you start to play with Hpricot yourself. Look at the entire snippet to
parse the document and assign the new ratings, it's very similar to REXML (see
Listing 33).

Listing 33. Parsing, navigating and manipulating an XML document using
Hpricot

def parse_with_hpricot(xml _data)
doc = Hpricot. XM (xm _data)
(doc/ di shnane) . each{ |d|sh nane_el ement|

i f dish_name_el ement.inner_htm == "Fish Head Curry" or
di sh_ name “element.inner_htm == "Pig Organ Soup”
parent = di sh_nanme_el enent . parent
garent attributes["rating"] = "6"

en

}

end

(Don't forget to require rubygems and hpricot at the top of the main_controller.rb
file!)

The key piece of interest in Listing 33 is this call in Listing 34.

Listing 34. Hpricot's divisor method

(doc/ : di shnane)

In Ruby, everything is an object. Ruby has no primitives, which is one reason why
you can actually use the divisor (/) as a method name. The divisor method in Hpricot
is just an alias for the search method, so another way to do exactly the same thing
as in Listing 34 is shown in Listing 35.

Listing 35. Hpricot's search method (also aliased as /)

doc. sear ch(: di shnane)

It's good to remember that parenthesis to method calls are optional in Ruby. You can

Ruby on Rails and XML
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 19 of 25

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

take them or leave them depending on what you find more readable. Other than that
difference, you'll notice that the code for manipulating the XML document is nearly
identical.

You can do all sorts of impressive things with Hpricot's CSS and XPath selectors,
and for more advanced usage, | recommend that you look at all the examples on the
Hpricot Web site.

Parsing XML recursively with REXML

Sometimes you need to parse an XML document, and you might not know the
structure or content or what you're looking for ahead of time. In that case you're not
necessarily looking for specific elements, or you might just want to build up some
in-memory data structure. Using REXML you can do this with unbelievable ease
(see Listing 36).

Listing 36. Iterate over an entire XML document recursively

def parse_recursive(xm _data)
doc = REXM.:: Docunent.new(xmi _data)
root = doc. root
root . each_recursive{ |elenent|
| ogger.info "El ement: #{elenent}"

redirect_to :action =>"index'
end

end

(To see the output, check the | og/ devel opnent . | og file. You'll see it amongst
the other messages.)

Technically, the code that actually recurses the entire document and logs each
element is a one-liner. It has been split into three lines to make it look like it actually
took some work, but alas -- you can reduce the core to this single line of code (see
Listing 37).

Listing 37. Iterate over an entire XML document recursively in one line of code

root.each_recursive{ |element| |ogger.info "El ement: #{elenment}" }

The REXML API includes many other convenient methods. For example, if you just
wanted to iterate over a given element's direct descendents instead of the entire
document recursively, you can just do the following from Listing 38.

Listing 38. Iterate over a given XML elements direct descendants (immediate
children)

doc = REXM.:: Document.new(xm _data)
root = doc.root

Ruby on Rails and XML
Page 20 of 25 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

root.each_elenent{ |child| logger.info "Child El enent: #{child}" }

And that brings you to the end of your XML, Ruby and Rails goodness.

Section 8. Summary

Wrap up

In this tutorial, you generated a Rails application stub and created one controller to
handle requests that generate and manipulate an example XML document. You saw
how to generate XML content with REXML and Builder, and how to navigate and
manipulate XML content with REXML and Hpricot. Additionally, you looked briefly at
how to handle file uploads in Rails, and how to hijack a Rails response object, in
order to serve something to the client other than a Rails view (such as generated
XML data).

Ruby on Rails and XML
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 21 of 25

http://www.ibm.com/legal/copytrade.shtml

developerWorks®

Downloads

Description

Tutorial source code

Information about download methods

Ruby on Rails and XML
Page 22 of 25

ibm.com/developerWorks

Name Size Download method
x-rubyonrailsxml-seQ@8&Bip HTTP

© Copyright IBM Corporation 1994, 2008. All rights reserved.

http://download.boulder.ibm.com/ibmdl/pub/software/dw/xml/x-rubyonrailsxml-source.zip
http://www.ibm.com/developerworks/library/whichmethod.html
http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

Resources

Learn

Ruby on Rails: Visit the official Ruby on Rails Web site.
Ruby: Also, visit the official Ruby Programming Language Web site.

Processing XML in Ruby (Koen Vervloesem, XML.com, November 2005): In
this great article, find plenty of examples of creating, parsing and manipulating
XML using REXML.

The Poignant Guide to Ruby: Dig into an excellent and free online Ruby
resource.

Humble Little Ruby Book: Walk through the basics of working with Ruby and
much more in another excellent and free online Ruby resource.

XML Matters: The REXML Library (David Mertz, developerWorks, March 2002):
Read how to process XML with the REXML library and tailor the library to your
programming language as you develop an XML application.

Four cool libraries for Ruby (Pat Eyler, developerWorks, January 2006):
Improve your Ruby code as you learn to use four members of Ruby's standard
library -- RDoc, WEBrick, dRuby, and REXML -- more effectively.

What's the secret sauce in Ruby on Rails? (Bruce Tate, developerWorks, May
2006): Read about the Ruby on Rails framework in this introductory discussion.

Ruby on Rails and J2EE: Is there room for both? (Aaron Rustad,
developerWorks, July 2005): Compare Rails and J2EE in the technology
industry.

Introduction to XML (Doug Tidwell, developerWorks, August 2002): Learn the
basic concepts behind XML in this popular tutorial.

Understanding DOM (Nicholas Chase, developerWorks, updated March 2007):
Learn to refer to, retrieve, and change items within an XML structure through
the Document Object Model (DOM).

Ajax for Java developers: Exploring the Google Web Toolkit (Philip McCarthy,
developerWorks, June 2006): Develop Ajax applications from a single Java
codebase in this introduction to GWT's comprehensive set of APIs and tools for
creating dynamic Web applications almost entirely in Java code.

Build an Ajax application using Google Web Toolkit, Apache Derby, and
Eclipse: Read the developerWorks article series by Noel Rappin:

» Part 1: The fancy front end: (December 2006): See how to build the front
end of a sample delivery system.

» Part 2: The reliable back end (January 2007): Read how to create a
relational database using Derby, and a bare-bones mechanism to convert
the database rows to Java objects.

Ruby on Rails and XML
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 23 of 25

http://www.rubyonrails.com
http://www.ruby-lang.org
http://www.xml.com/lpt/a/1626
http://poignantguide.net/ruby/
http://www.infoq.com/minibooks/ruby/
http://www.ibm.com/developerworks/xml/library/x-matters18.html
http://www.ibm.com/developerworks/edu/os-dw-os-ruby3-i.html
http://www.ibm.com/developerworks/java/library/j-cb05096.html
http://www.ibm.com/developerworks/web/library/wa-rubyonrails/
http://www.ibm.com/developerworks/edu/x-dw-xmlintro-i.html
http://www.ibm.com/developerworks/edu/x-dw-xudom-i.html
http://www.ibm.com/developerworks/java/library/j-ajax4/
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=build+an+ajax+application+using+google+web+toolkit+apache+derby+and+eclipse
http://www.ibm.com/developerworks/library/os-ad-gwt1/index.html
http://www.ibm.com/developerworks/library/os-ad-gwt2/index.html
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

e Part 3: Communication (February 2007): With the Remote Procedure Call
(RPC) framework within GWT, get the client and server talking to each
other.

» Part 4: Deployment (February 2007): Learn to deploy your GWT app within
a Java Web application server and find tips on using the Apache Derby
database to drive the GWT.

YouTube's developer APIs: Learn how to add online videos from YouTube into
your application.

Amazon Web Services: Explore this suite of web services to enrich your
applications.

IBM XML certification: Find out how you can become an IBM-Certified
Developer in XML and related technologies.

XML technical library: See the developerWorks XML Zone for a wide range of
technical articles and tips, tutorials, standards, and IBM Redbooks.

developerWorks technical events and webcasts: Stay current with technology in
these sessions.

developerWorks XML zone: Explore hundreds of articles and tutorials about
XML.

The technology bookstore: Browse for books on these and other technical
topics.

Get products and technologies

Ruby Gems: Check out the official Ruby Gems Web site.

Hpricot: At the official Hpricot Web site, find links to good documentation and
examples.

Builder: Get the RDoc pages for the Builder API, including good documentation.

REXML.: Explore the official REXML Web site, including tutorials and
documentation.

IBM trial software: Build your next development project with trial software
available for download directly from developerWorks.

Discuss

developerWorks XML forums: Communicate with other XML developers trying
to solve the same problems you are.

developerWorks blogs: Get involved in the developerWorks community.

About the author

Ruby on Rails and XML
Page 24 of 25 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/developerworks/library/os-ad-gwt3/index.html
http://www.ibm.com/developerworks/library/os-ad-gwt4/index.html
http://www.youtube.com/dev
http://www.amazon.com/gp/browse.html?node=3435361
http://www.ibm.com/certify/certs/xmsdreltop.shtml
http://www.ibm.com/developerworks/views/xml/library.jsp
http://www.ibm.com/developerworks/offers/techbriefings/?S_TACT=105AGX06&S_CMP=art
http://www.ibm.com/developerworks/xml
http://www.ibm.com/developerworks/apps/SendTo?bookstore=safari
http://www.rubygems.org
http://code.whytheluckystiff.net/hpricot/
http://builder.rubyforge.org/
http://www.germane-software.com/software/rexml/
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX06&S_CMP=art
http://www.ibm.com/developerworks/forums/dw_xforums.jsp
http://www.ibm.com/developerworks/blogs/
http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

Daniel Wintschel

Daniel Wintschel is a technology agnostic coffee drinker who loves solving problems
for people and businesses. He's done a whole lot of Java programming (~7 years),
and is starting to do a whole lot of Ruby programming (~1.5 years). He is the
co-founder of Helium Syndicate, a company dedicated to building best of breed
software solutions for small to medium sized businesses. When he's not writing
software, he's likely eating, drinking coffee, or wishing he were writing software.

Ruby on Rails and XML
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 25 of 25

http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	What is this tutorial about?
	Prerequisites

	Introduction
	Ruby
	Rails
	Ruby and XML
	REXML
	Builder
	Hpricot
	#{random_xml_util}

	Building the skeletal Ruby on Rails app (in preparation for XML processing)
	Generate the Rails application stub
	Create the controller
	Create the layout and view
	One last look
	Start up the server

	Creating a new XML document
	Your sample XML document
	REXML
	Builder

	Downloading the XML document
	Hijacking the Rails response

	Uploading a file in Rails (in this case, XML)
	View code
	Controller code

	Parsing and manipulating XML
	Parse with REXML
	Parse with Hpricot
	Parsing XML recursively with REXML

	Summary
	Wrap up

	Downloads
	Resources
	About the author

